期刊文献+

Recent progress in periodic patterning fabricated by self-assembly of colloidal spheres for optical applications 被引量:3

胶体球自组装制备周期性结构在光学应用方面的研究进展
原文传递
导出
摘要 Colloidal crystals are periodically ordered arrays of monodisperse colloidal particles which represent a new class of self-assembled materials showing potential applications in many fields.Two-dimensional graphic nanostructures based on colloidal crystals have inherent periodicity from tens of nanometers to several micrometers,which gives them rich and interesting optical properties.This article presents a comprehensive review about the current research activities on the self-assembly of colloidal spheres which is an effective strategy for fabrication of various hierarchical and ordered nanostructures,with particular attention paid to the unique properties and applications of the colloidal crystal-based nanostructures.Three main aspects are elaborated:a)controllable self-assembly of colloidal crystals;b)the functions of the obtained colloidal spheres acting as the patterned mask for successive construction of numerous nanostructures;c)the novel properties and promising optical applications of the patterned nanostructures in various domains,such as plasmonic-related fields,antireflection,photonic crystals,photocatalysis and electronic devices.After that,the current challenges and future perspectives in this area are provided.This review aims to inspire more ingenious designs and exciting research for manufacturing nanostructures utilizing colloidal self-assembly. 胶体晶体是由单分散胶体颗粒周期性有序排列而成的一类新型自组装材料,在许多领域都具有非常广泛的应用.基于胶体晶体自组装的微纳结构具有从几十纳米到几微米可调控的固有周期性,这赋予了它们独特的光学性质.本文主要介绍了近年来胶体球自组装技术制备周期性图案及其在光学应用方面的研究进展,具体包括:(a)胶体晶体的可控自组装;(b)通过自组装所获得的胶体球充当掩模板,构造更多新颖的功能纳米结构;(c)图案化纳米结构在等离激元、抗反射、光子晶体、光催化、电子器件等光学领域的新特性及应用前景.最后,对此领域当前的挑战和未来的前景进行了展望.本文旨在通过胶体自组装技术设计更巧妙的周期结构和探索更广泛的应用.
作者 Jing Liu Xingang Zhang Wenqing Li Changzhong Jiang Ziyu Wang Xiangheng Xiao 刘静;张新刚;李文庆;蒋昌忠;王自昱;肖湘衡(School of Physics and Technology,Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education,Hubei Nuclear Solid Physics Key Laboratory,Wuhan University,Wuhan 430072,China;Institute of Technological Sciences,Wuhan University,Wuhan 430072,China;Synergetic Innovation Center for Quantum Effects and Application,Key Laboratory of Low Dimensional Quantum Structures and Quantum Control,School of Physics and Electronics,Hunan Normal University,Changsha 410081,China;Su Zhou Institute of Wuhan University,Suzhou 215123,China)
出处 《Science China Materials》 SCIE EI CSCD 2020年第8期1418-1437,共20页 中国科学(材料科学(英文版)
基金 the National Key R&D Program of China(2018YFA0703700) the National Natural Science Foundation of China(11722543,U1867215,11875211 and U1932134) the Fundamental Research Funds for the Central Universities(2042019kf0312) Suzhou Key Industrial Technology Innovation Project(SYG201828) Hubei Provincial Natural Science Foundation(2019CFA036)。
  • 相关文献

参考文献2

二级参考文献43

  • 1Lakowicz, J. R. Plasmonics in biology and plasmon?controlled fluorescence. Plasmonics 2006, I, 5-33.
  • 2Lakowicz, J. R. Probe Design and Chemical Sensing; Plenum Press: New York, 1994; Vol. 4.
  • 3Luo, S.; Zhang, E.; Su, Y.; Cheng, T.; Shi, C. A review ofNIR dyes in cancer targeting and imaging. Biomaterials 2011, 32,7127-7138.
  • 4Licha, K.; Rietke, B.; Ntziachristos, V.; Becker, A.; Chance, B.; Semmler, W. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: Synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem. Photobiol. 2000, 72, 392-398.
  • 5Kronick, M. N. The use of phycobiliproteins as fluorescent labels in immunoassay. J. Immunol. Methods 1986, 92, 1-13.
  • 6Daehne, S.; Resch-Genger, U.; Wolfbeis, O. S. Near-Infrared Dyes for High Technology Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998.
  • 7Walker, N. J. Tech. Sight. A technique whose time has come. Science 2002, 296, 557-559.
  • 8Xie, F.; Baker, M. S.; Goldys, E. M. Homogeneous silver?coated nanoparticle substrates for enhanced fluorescence detection. J. Phys. Chern. B 2006, 110, 23085-23091.
  • 9Purcell, E. M.; Torrey H. c., Pound R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 1946, 69, 674.
  • 10Dulkeith, E.; Ringler, M.; Klar, T. A.; Feldman, J.; Munoz Javier, A.; Parak, W. J. Gold nanoparticles quench fluores?cence by phase induced radiative rate suppression. Nano Lett. 2005, 5, 585-589.

共引文献9

同被引文献23

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部