期刊文献+

基于模糊聚类的分布式Web日志挖掘方法 被引量:3

Distributed Web Log Mining Method Based on Fuzzy Clustering
下载PDF
导出
摘要 为了提高分布式Web日志挖掘能力,提出基于模糊聚类的分布式Web日志挖掘方法.构建分布式Web日志的关联规则分布集,采用模糊信息聚类分析方法进行分布式Web日志关联规则特征聚类处理,提取分布式Web日志性的多重关联特征量,结合重叠性迭代检测方法进行分布式Web日志挖掘过程中的自适应寻优,采用模糊关联规则调度方法进行分布式Web日志挖掘的负载均衡调度.通过计算邻接点的适应度函数,对相似度高的分布式Web日志关联规则进行合并处理,根据模糊信息聚类结果实现分布式Web日志挖掘优化.仿真结果表明,采用该方法进行分布式Web日志挖掘的精度较高,提高了分布式Web日志的推荐和信息检索能力. In order to improve the ability of distributed Web log mining,a distributed Web log mining method based on association rules and fuzzy clustering is proposed.Build distributed Web log distribution set of association rules,fuzzy clustering analysis method for distributed Web information log feature clustering,association rules extraction distributed Web log multiple correlation characteristics,combined with overlaps iterative detection method for distributed adaptive optimization of the process of Web log mining,scheduling method using fuzzy association rules on distributed load balance scheduling of the Web log mining.By calculating the fitness function of the adjacency points,the distributed Web log association rules with high similarity are combined,and the distributed Web log mining optimization is realized according to the fuzzy information clustering results.Simulation results show that the precision of distributed Web log mining using this method is high,and the ability of distributed Web log recommendation and information retrieval is improved.
作者 陈宝国 宋旸 CHEN Baoguo;SONG Yang(School of Computer Science,Huainan Normal University,Huainan 232000,China)
出处 《太原师范学院学报(自然科学版)》 2020年第3期54-58,共5页 Journal of Taiyuan Normal University:Natural Science Edition
基金 2018年安徽高校自然科学重点研究项目(KJ2018A0469) 淮南师范学院2019年度校级科学研究项目(2019XJYB14)。
关键词 关联规则 模糊聚类 分布式 WEB日志 挖掘 association rules fuzzy clustering distributed Web logs mining
  • 相关文献

参考文献10

二级参考文献58

  • 1吴瑞,宁玉富.基于模糊粗糙k-均值的用户访问模式的聚类[J].系统工程理论与实践,2007,27(7):116-121. 被引量:4
  • 2SINGLA S and MALIK A. Survey on various improved Apriori algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2014, 3(11): 8528-8531.
  • 3MINAL G I and SURYAVANSHI N Y. Association rule mining using improved Apriori algorithm[J]. International Journal of Computer Applications, 2015, 112(4): 37-42.
  • 4RAJESWARI K. Improved Apriori algorithm A comparative study using different objective measures[J]. International Journal of Computer Science and Information Technologies, 2015, 6(3): 3185-3191.
  • 5ACHAR A, LAXMAN S, and SASTRY P S. A unified view of the Apriori-based algorithms for frequent episode discovery[J]. Knowledge & Information Systems, 2012, 31(2): 223-250.
  • 6AGRAWAL R and SRIKANT R. Fast algorithms for mining association rules[C]. VLDB’94 Proceedings of the 20th International Conference on Very Large Data Bases, San Francisco, CA, USA, 1994: 487- 499.
  • 7YANG Z, TANG W, SHINTEMIROV A, et al. Association rule mining-based dissolved gas analysis for fault diagnosis of power transformers[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2009, 39(6): 597-610.
  • 8ZHANG F, ZHANG Y, and BAKOS J D. Gpapriori: Gpu-accelerated frequent itemset mining[C]. 2011 IEEE International Conference on Cluster Computing, Austin, TX, USA, 2011: 590-594.
  • 9ANGELINE M D and JAMES S P. Association rule generation using Apriori mend algorithm for student’s placement[J]. International Journal of Emerging Sciences, 2012, 2(1): 78-86.
  • 10LI N, ZENG L, HE Q, et al. Parallel implementation of Apriori algorithm based on MapReduce[C]. 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel Distributed Computing (SNPD), Kyoto, Japan, 2012: 236-241.

共引文献86

同被引文献19

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部