期刊文献+

引入通道注意力机制的SSD目标检测算法 被引量:23

SSD Target Detection Algorithm with Channel Attention Mechanism
下载PDF
导出
摘要 为提升原始SSD算法的小目标检测精度及鲁棒性,提出一种基于通道注意力机制的SSD目标检测算法。在原始SSD算法的基础上对高层特征图进行全局池化操作,结合通道注意力机制增强高层特征图的语义信息,并利用膨胀卷积结构对低层特征图进行下采样扩大其感受野以增加细节与位置信息,再通过级联的方式将低层特征图与高层特征图相融合,从而实现小目标及遮挡目标的有效识别。实验结果表明,与原始SSD算法相比,该算法在PASCAL VOC数据集上的平均精度均值提升了2.2%,具有更高的小目标检测精度和更好的鲁棒性。 In order to improve the accuracy and robustness of the original Single Shot Multibox Detector(SSD)algorithm for small target detection,this paper proposes a SSD target detection algorithm based on channel attention mechanism.The algorithm implements global pooling on high-level feature maps on the basis of the original SSD algorithm.Then the semantic information of high-level feature maps is enhanced by using the channel attention mechanism,and the dilated convolution structure is introduced for subsampling of low-level feature maps to enlarge their receptive field,so as to improve details and location information.Finally,different levels of feature maps are fused by cascading to implement effective recognition of small objects and occluded objects.Experimental results on the PASCAL VOC dataset show that compared with the original SSD algorithm,the proposed algorithm improves the mean Average Precision(mAP)by 2.2%with a higher accuracy and robustness for small object detection.
作者 张海涛 张梦 ZHANG Haitao;ZHANG Meng(College of Software,Liaoning Technical University,Huludao,Liaoning 125105,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第8期264-270,共7页 Computer Engineering
基金 辽宁省自然科学基金(20170540426)。
关键词 SSD算法 全局池化 通道注意力机制 膨胀卷积 PASCAL VOC数据集 SSD algorithm global pooling channel attention mechanism dilated convolution PASCAL VOC dataset
  • 相关文献

参考文献6

二级参考文献57

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J].{H}International Journal of Computer Vision,2004,(2):91-110.
  • 2Dalal N,Triggs B. Histograms of oriented gradients for human detection[A].San Diego,CA,USA:IEEE,2005.886-893.
  • 3Ojala T,Pietikainen M,Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[A].Jerusalem,Irsael:IEEE,1994.582-585.
  • 4Matas J,Chum O,Urban M. Robust wide-baseline stereo from maximally stable extremal regions[J].{H}IMAGE AND VISION COMPUTING,2004,(10):761-767.
  • 5Hinton G E,Osindero S,Teh Y W. A fast learning algorithm for deep belief nets[J].{H}Neural Computation,2006,(7):1527-1554.
  • 6Hinton G E. Learning multiple layers of representation[J].{H}Trends in Cognitive Sciences,2007,(10):428-434.
  • 7Hinton G E,Zemel R S. Autoencoders,minimum description length,and Helmholtz free energy[A].Burlington,USA:Morgan Kaufmann,1994.3-10.
  • 8Rumelhart D E,Hinton G E,Williams R J. Learning Representations by Back-Propagating Errors[M].Cogmitive Modeling:MIT Press,2002.213.
  • 9Vincent P,Larochelle H,Bengio Y. Extracting and composing robust features with denoising autoencoders[A].New York,NY,USA:ACM,2008.1096-1103.
  • 10Lee H,Grosse R,Ranganath R. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[A].New York,NY,USA:ACM,2009.609-616.

共引文献314

同被引文献189

引证文献23

二级引证文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部