期刊文献+

面向医学图像分割的半监督条件生成对抗网络 被引量:16

Medical Image Segmentation Using Semi-supervised Conditional Generative Adversarial Nets
下载PDF
导出
摘要 医学图像分割是计算机辅助诊断的关键技术.青光眼作为全球第二大致盲眼病,其早期筛查和临床诊断依赖于眼底图的视盘和视杯的准确分割.但传统的视盘和视杯分割方法采用人工构建特征,模型泛化能力差.近年来,基于卷积神经网络的端对端学习模型可通过自动发现特征来分割视盘和视杯,但由于标注样本有限,模型难以训练.提出一个基于半监督条件生成对抗网络的视盘和视杯两阶段分割模型——CDR-GANs.该模型的每个分割阶段均由语义分割网络、生成器和判别器构成,通过对抗学习,判别器引导语义分割网络和生成器学习眼底图及其分割图的联合概率分布.在真实数据集ORIGA上的实验结果表明,CDR-GANs在均交并比(mean intersection over union,简称MIoU)、CDR绝对误差(absolute CDR error)和实际分割效果这些指标上明显优于现有模型. Medical image segmentation is a key technology in computer aided diagnosis.As a widespread eye disease,glaucoma may cause permanent loss in vision and its screening and diagnosis requires accurate segmentation of optic cup and disc from fundus images.Most traditional computer vision methods segment optic cup and disc with artificial features lead to limited generalization ability.While the end-to-end learning models based on convolutional neural networks focus on optic disc and cup segmentation using automatically detected features,but fail to tackle the lack of labeled samples,thus the segmentation performance is still barely satisfactory.This study proposes an effective two-stage optic disc and cup segmentation method based on semi-supervised conditional generative adversarial nets,namely CDR-GANs.Each stage builds upon three players—A segmentation net,a generator,and a discriminator,where the segmentation net and generator concentrate on learning the conditional distributions between fundus images and their corresponding segmentation maps,and the discriminator distinguishes whether the image-label pairs come from the empirical joint distribution.The extensive experiments show that the proposed method achieves state-of-the-art optic cup and disc segmentation results on ORIGA dataset.
作者 刘少鹏 洪佳明 梁杰鹏 贾西平 欧阳佳 印鉴 LIU Shao-Peng;HONG Jia-Ming;LIANG Jie-Peng;JIA Xi-Ping;OUYANG Jia;YIN Jian(School of Computer Science,Guangdong Polytechnic Normal University,Guangzhou 510665,China;Guangdong Key Laboratory of Big Data Analysis and Processing(Sun Yat-sen University),Guangzhou 510006,China;School of Medical Information Engineering,Guangzhou University of Chinese Medicine,Guangzhou 510006,China;School of Data and Computer Science,Sun Yat-sen University,Guangzhou 510006,China)
出处 《软件学报》 EI CSCD 北大核心 2020年第8期2588-2602,共15页 Journal of Software
基金 国家自然科学基金(61472453,61702119,U1401256,U1501252,U1611264,U1711261,U1711262) 广东省自然科学基金(2019A1515012048,2015A030310312,2014A030309013) 广东省教育厅青年创新人才项目(2017KQNCX117,2015KQNCX084) 广州市科技计划(201802010029) 广东省大数据分析与处理重点实验室开放基金(201802)。
关键词 医学图像 深度学习 生成对抗网络 半监督学习 青光眼筛查 medical image deep learning generative adversarial nets semi-supervised learning glaucoma screening
  • 相关文献

参考文献7

二级参考文献63

  • 1王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:333
  • 2王飞跃.计算实验方法与复杂系统行为分析和决策评估[J].系统仿真学报,2004,16(5):893-897. 被引量:147
  • 3陆剑锋,林海,潘志庚.自适应区域生长算法在医学图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2168-2173. 被引量:69
  • 4王飞跃.关于复杂系统的建模、分析、控制和管理[J].复杂系统与复杂性科学,2006,3(2):26-34. 被引量:64
  • 5陈允杰,张建伟,韦志辉,夏德深,王平安.同时配准-分割脑MR图像的耦合变分模型[J].计算机辅助设计与图形学学报,2007,19(2):215-220. 被引量:6
  • 6Gottlieb K L, Hansen C R, Hansen O, Westberg J, Brink C. Investigation of respiration induced intra-and inter-fractional tumour motion using a standard cone beam CT. Acta Oncologica, 2010, 49(7): 1192-1198.
  • 7Saw C B, Yang Y, Li F, Yue N J, Ding C X, Komanduri K, Hug S, Heron D E. Performance characteristics and quality assurance aspects of kilovoltage cone-beam CT on medical linear accelerator. Medical Dosimetry, 2007, 32(2): 80-85.
  • 8Liu Y C, Xiao K, Liang A L, Guan H B. Fuzzy C-means clustering with bilateral filtering for medical image segmentation. In: Proceedings of the 7th International Conference. Hybrid Artificial Intelligent Systems. Salamanca, Spain: Springer, 2012. 221-230.
  • 9Sun W, Niessen W J, Klein S. Free-form deformation using lower-order B-spline for nonrigid image registration. In: Proceedings of the 17th International Conference Medical Image Computing and Computer Assisted Intervention. Boston, MA: Springer, 2014. 194-201.
  • 10Nithiananthan S, Schafer S, Uneri A, Mirota D J, Stayman J W, Zbijewski W, Brock K K, Daly M J, Chan H, Irish J C, Siewerdsen J H. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach. Medical Physics, 2011, 38(4): 1785-1798.

共引文献2267

同被引文献97

引证文献16

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部