期刊文献+

计量装置故障抢修主动服务预警模型研究 被引量:1

Active service early warning model for metering device failure repair
下载PDF
导出
摘要 为了提高故障抢修效率和客户服务质量,文中提出了一种基于用户画像技术和故障诊断技术的计量装置故障抢修主动服务预警模型。首先,建立电力用户标签库体系,利用K-Means聚类方法构建用户画像模型,实现用户群体类型的定义;然后,利用极端梯度提升XGBoost算法构建计量装置故障识别模型,实现计量装置故障风险等级的定义。最后,根据用户画像模型和故障识别模型结果,建立计量装置故障抢修主动服务预警模型。通过实证分析,发现故障抢修主动服务预警模型的一级预警等级核查精准率为84.62%,说明该模型具有可靠性。 In order to improve the efficiency of fault repair and customer service quality,an active service early warning model is proposed for metering devices fault repair based on customer portrait technology and fault diagnosis technology.Firstly,a power user tag library system is established,K-Means clustering method is used to construct a customer portrait model,and the definition of user group types is realized.The XGBoost algorithm is used to construct a measurement device fault identification model to achieve the measurement device failure risk level definition.Finally,based on the results of the customer portrait model and the fault identification model,the active service early warning model for the metering device failure repair is established.Through empirical analysis,it is found that the verification accuracy rate of the first-level warning level in the active service early warning model for failure repair was 84.62%,indicating that the model is reliable.
作者 殷新博 唐旭东 王数 陆芸 周建玲 YIN Xin-bo;TANG Xu-dong;WANG Shu;LU Yun;ZHOU Jian-ling(State Grid Changzhou Electric Power Company,Changzhou 213003,Jiangsu Province,China;NARI Group Corporation,Nanjing 210000,China)
出处 《信息技术》 2020年第8期146-151,156,共7页 Information Technology
关键词 故障抢修预警 用户画像 K-MEANS聚类 XGBoost分类 计量装置 early warning of fault repair customer portrait K-Means clustering XGBoost classification Metering Device
  • 相关文献

参考文献10

二级参考文献50

  • 1伍青生,余颖,郑兴山.精准营销的思想和方法[J].市场营销导刊,2006,0(5):39-42. 被引量:49
  • 2HECTOR A CRODRIGO SHECTOR Aet al.Robust alternating AdaBoost[C]//Iberoamerican Congress on Pattern Recognition(CIARP 2007); 2007111316; Vina del MarValparaiso(CL)2007:427-436.
  • 3GAO Y LGAO F.Edited AdaBoost by weighted kNN[Z].Neurocomputing2010.
  • 4WEIMING HWEI HMAYBANK S.AdaBoostbased algorithm for network intrusion detection[J].Systems Manand CyberneticsPart B:CyberneticsIEEE Transactions on200838(2):577-583.
  • 5ZHAO TianzhongLU JianjiangZHANG Yafeiet al.AdaBoost learning basedon sharing features and genetic algorithm for image annotation[C]//Natural Computation 2008.ICNC ′08.The 4th International Conference on2008:402-406.
  • 6YU Jiayuan.The application of BPAdaBoost strong classifier to acquire knowledge of student creativity[C]//Computer Science and Service System (CSSS)2011 International Conference on2011:2669-2672.
  • 7毛国君.基于数据挖掘的电力行业客户细分模型研究[D].北京:北京工业大学,2003.
  • 8毛志忠,田慧欣,王琰.基于AdaBoost混合模型的LF炉钢水终点温度软测量[J].仪器仪表学报,2008,29(3):662-667. 被引量:11
  • 9蒋焰,丁晓青.基于多步校正的改进AdaBoost算法[J].清华大学学报(自然科学版),2008,48(10):1613-1616. 被引量:25
  • 10焦淑华,夏冰,徐海静,刘莹.BP神经网络预测的MATLAB实现[J].金融理论与教学,2009(1):55-56. 被引量:36

共引文献82

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部