期刊文献+

基于GPS轨迹数据的不同交通状态下交通方式识别流程优化方法 被引量:1

Procedure Optimization Method Based on GPS Trajectory Data for Transportation Mode Recognition under Different Traffic Conditions
下载PDF
导出
摘要 基于GPS轨迹数据的交通调查技术能够有效弥补传统居民出行调查方式的不足,该技术在高峰拥堵时段的交通方式识别效果有待进一步研究.针对公交车和小汽车识别精度较低的问题,本文提出基于支持向量机(SVM)的流程优化方法,加入基于短时傅里叶变换(STFT)的频域属性,利用遗传算法(GA)对SVM的惩罚系数和核参数进行联合优化,评估不同交通状态下交通方式和方式转换点的识别效果.结果表明:频域属性的加入能够有效提升交通方式识别精度,在道路畅通状态和一般拥堵状态下,交通方式和方式转换点的识别效果均较为理想;在严重拥堵状态下,机动化方式易与非机动化方式相混淆,方式转换点最大识别误差在13 min以内,相比于基于主观回忆的人工问卷调查方式仍具有参考性. This study focuses on the transportation mode recognition for the Global Positioning System(GPS)-based travel survey technology.The study proposed a procedure optimization method that is based on the Support Vector Machine(SVM)to improve the recognition accuracy of buses and cars.The proposed model included the new frequency domain features generated from Short-time Fourier Transform(STFT).The Genetic Algorithm(GA)was used to optimize the penalty parameter and the nuclear parameter of SVM.The recognition results of the transportation modes and mode transfer time under different traffic conditions were evaluated,and the result showed the newly added frequency domain features effectively improved the recognition accuracy of the transportation modes.In the free-flow and slightly congested traffic conditions,the transportation mode recognition and mode transfer time both obtained satisfied results.In severe congestions,the motorized modes are relatively easy to be mixed with the non-motorized modes.The maximum error of mode transfer time is within 13 minutes,which might still be informative compared with traditional manual questionnaire surveys.
作者 杨飞 姜海航 刘好德 姚振兴 霍娅敏 周子一 YANG Fei;JIANG Hai-hang;LIU Hao-de;YAO Zhen-xing;HUO Ya-min;ZHOU Zi-yi(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611756,China;Urban Transportation Center,China Academy of Transportation Science,Beijing 100029,China;School of Highway,Chang'an University,Xi'an 710054,China;School of Transportation,Southeast University,Nanjing 211189,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第4期83-89,105,共8页 Journal of Transportation Systems Engineering and Information Technology
基金 国家重点研发计划(2018YFB1601300) 中央高校基本科研业务费专项资金(300102219301) 国家自然科学基金(51678505).
关键词 智能交通 交通方式识别 支持向量机 GPS轨迹数据 遗传算法 频域属性 intelligent transportation transportation mode recognition support vector machine GPS trajectory data genetic algorithm frequency domain feature
  • 相关文献

参考文献1

二级参考文献8

  • 1翟林,刘亚军.支持向量机的中文文本分类研究[J].计算机与数字工程,2005,33(3):21-23. 被引量:14
  • 2杨志华,齐东旭,杨力华,吴立军.基于经验模式分解的汉字字体识别方法[J].软件学报,2005,16(8):1438-1444. 被引量:13
  • 3张亮,张凤鸣,毛红保,惠晓滨.基于神经网络的飞参数据特征选择方法[J].计算机工程与设计,2007,28(9):2114-2115. 被引量:2
  • 4邓乃杨,田英杰.数据挖掘的新方法-支持向量机[M].北京:科学出版社,2004.
  • 5ChengD GuangDS LINXG.Improved line segment hausdorf distance for face recognition .光电子.激光,2005,16(1):91-95.
  • 6Fung G,Mangasarian O L.Finite Newton method for Lagrangian support vector machine classification[J].Neurocomputing,2003, 55:39-55.
  • 7Mangasarian O L.A finite Newton method for classification[J]. Optimization Methods and Software,2002,17:913-929.
  • 8Liu Yu-Hsin.Global maximum likelihood estimation procedure for multinomial probit model parameters[J].Transportation Research Part B,2000,34(6):20-23.

共引文献18

同被引文献21

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部