期刊文献+

基于QPSO的机械臂多项式插值轨迹规划 被引量:4

QPSO-based robotic arm polynomial interpolation trajectory planning
下载PDF
导出
摘要 为了实现机械臂在工业中高精度、高效率作业,提出一种基于量子粒子群优化(QPSO)算法求解六自由度机械臂的时间最优运行轨迹的方法。针对多项式差值的轨迹规划具有阶次较高、没有凸包性等特点,利用3—5—3分段插值法建立轨迹函数。解决了多项式插值轨迹阶次高、难被优化的问题。轨迹优化效果良好,关节角度位置、速度和加速度无突变。仿真实验证明了该方法的可行性。通过对比得出:QPSO较于一般PSO与双层PSO更适用于对工业机械臂的时间最优轨迹规划。 In order to realize high precise and high efficienty operation of the manipulator in the industry,a method based on quantum particle swarm optimization( QPSO) algorithm to solve the time optimal trajectory of the six-degree-of-freedom manipulator is proposed. Aiming at the characteristic that the trajectory planning of polynomial interpolation has higher order,and there is no convex hull,this method uses the 3-5-3 piecewise interpolation method to establish the trajectory function. The method solves the problem that the polynomial interpolation trajectory has high order and is difficult to be optimized. The trajectory optimization effect is good,and the joint angular position,velocity and acceleration have no mutation. The simulation experiment proves the feasibility of the method. By comparison,QPSO is more suitable for time-optimal trajectory planning of industrial robot arm than general PSO and double-layer PSO.
作者 肖仁 吴定会 XIAO Ren;WU Dinghui(Engineering Research Center of Internet of Things,Technology Application,Ministry of Education,Jiangnan University,Wuxi 214122,China)
出处 《传感器与微系统》 CSCD 2020年第8期38-41,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61572237) 2018届江苏研究生实践创新计划项目(SJCX18-064)。
关键词 量子粒子群优化算法 六自由度机械臂 多项式插值 时间最优 轨迹规划 quantum particle swarm optimization(QPSO)algorithm six-degree-of-freedom(DOF)manipulator polynomial interpolation time optimal trajectory planning
  • 相关文献

参考文献3

二级参考文献24

  • 1韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 2LIN C S, CHANG P R, LUH J Y S. Formulation and optimization of cubic polynomial joint trajectories for industrial robots[J]. IEEE Transactions on Automatic Control, 1983, 28(12): 1066-1074.
  • 3BAZAZ S A, TONDU B. Minimum time on-line joint trajectory generator based on low order spline method for industrial manipulators[J]. Robotics and Autonomous Systems, 1999, 29(4): 257-268.
  • 4LI Yanliang, SHAO Wei, YOU Long, et al. An improved PSO algorithm and its application to UWB antenna design[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1236-1239.
  • 5GUO Tongying, LI Feng, HUANG Kuan, et al. Application of optimal algorithm on trajectory planning of mechanical arm based on B-Spline curve[J]. Applied Mechanics and Materials, 2013, 376: 253-256.
  • 6SASKA M, MACAS M, PREUCIL L, et al. Robot path planning using particle swarm optimization of Ferguson splines[C]//IEEE Conference on Emerging Technologies and Factory Automation. Prague, Czech Republic, 2006: 833-839.
  • 7SUPAKAR N, SENTIHIL A. PSO obstacle avoidance algorithm for robot in unknown environment[C]//International Conference on Communication and Computer Vision (ICCCV). Coimbatore, India, 2013: 1-7.
  • 8HU Menqi, WU T, WEIR J D. An adaptive particle swarm optimization with multiple adaptive methods[J]. IEEE Transactions on Evolutionary computation, 2013, 17(5): 705-720.
  • 9尼库拉 库克. 机器人学导论-分析、控制及应用[M]. 孙富春, 朱纪洪, 刘国栋等, 译. 第4版. 北京: 电子工业出版社, 2004: 60-72.
  • 10BORYGA M, GRABOS A. Planning of manipulator motion trajectory with higher-degree polynomials use[J]. Mechanism and Machine Theory, 2009, 44(7): 1400-1419.

共引文献41

同被引文献76

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部