期刊文献+

用于高轨卫星精密稳像的拖尾星斑复原 被引量:2

Restoration of Smearing Stars in Fine Image Stabilization of High-Orbit Satellites
原文传递
导出
摘要 为了提高复杂动态环境下精密稳像系统的质心定位精度,提出了一种基于生成对抗网络(GAN)的方法,以解决载体运动引起的星斑拖尾问题。传统的高斯模型先验方法对噪声敏感,盲反卷积方法采用简化模型估计模糊核,与真实值误差较大。所提方法结合了运动流图的运动方向和GAN的优化细节,将运动流图与模拟星点作为监督信号,采用端到端的形式复原星斑图,无需先验信息与迭代计算,并且可以抑制噪声。实验结果表明,相较于R-L方法,所提方法复原星斑后峰值信噪比提升了30.5%,质心定位精度提高了33.4%。 To improve the centroid localization accuracy of fine image stabilization systems in complex dynamic environments,this study proposes a method based on generative adversarial network(GAN)to solve the problem of star smearing caused by the satellite's carrier motion.The conventional Gaussian model method with prior information is sensitive to noise,and the blind deconvolution method estimates the blur kernel using a simplified model,leading to a large error compared with the real one.The proposed method combines motion direction of motion flow graphs and optimized details of GAN.The motion flow graphs and simulated star points are used as monitoring signals.The proposed method uses an end-to-end manner to restore star images without prior information and iterative calculations,and noise is suppressed.Experimental results show that the peak signal-to-noise ratio of star recovery and centroid localization accuracy are improved by 30.5%and 33.4%,respectively,compared with the R-L method.
作者 王奇 傅雨田 Wang Qi;Fu Yutian(Key Laboratory of Infrared System Detection and Imaging,Chinese Academy of Sciences,Shanghai 200083,China;Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2020年第13期66-73,共8页 Acta Optica Sinica
基金 国家863高技术研究发展计划(2015AA7015090,2015AA7015097) 国家自然科学基金(11573049)。
关键词 成像系统 运动模糊 星斑复原 生成对抗网络 流估计 imaging systems motion blur star restoration generative adversarial network flow estimation
  • 相关文献

参考文献3

二级参考文献27

共引文献39

同被引文献19

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部