期刊文献+

基于MUDW的多测点齿轮故障信号融合处理 被引量:2

Fusion of Gear Fault Signal Processing Based on MUDW Multi-Points Information
下载PDF
导出
摘要 针对传统齿轮故障信号处理中,对单一信号进行处理造成的敏感特征信息遗失问题,提出形态非抽样小波(MUDW)的多测点齿轮故障振动信号融合预处理方法,以充分利用各信号所蕴含的特征信息,减少噪声及干扰成分的影响。该方法首先应用时域同步平均(TSA)对各通道信号进行预处理;然后,根据形态非抽样小波的基础框架将信号分解,并采用相关峭度(CK)和加权运算的方式,表征各分解层近似信号对故障特征的贡献量,提高有用近似信号的比重;在此基础上,建立融合准则将各分解层信号进行融合,改善重构信号的特征信息;最后,齿轮裂纹故障实验证明:该方法能够较好地抑制噪声,明显突出故障齿轮啮合频率及其倍频,融合效果理想。 Aimed at the problems that in the traditional gear fault signal processing,the sensitive characteristic information is easily lost in the process of the single signal processing,a formal sampling wavelet(MUDW)fusion pretreatment method of multipoint gear fault vibration signal is proposed to make full use of the characteristic information of each signal contained to reduce the influence of noise and interference elements.First of all,each channel signal is preprocessed by using the time synchronous average(TSA),and then the morphological un-decimated wavelet framework signals are decomposed,and each decomposition level approximate signal's contribution to the fault is characterized to raise the proportion of useful approximation signals by adopting the correlated kurtosis(CK)and the weighted operation form.On the basis of this,each decomposition level signal is fused by the established fusion rule,improving the reconstructed signal characteristic information.Finally,the experiment of gear crack fault shows that the method can restrain noise well,and the meshing frequency and its double frequency are prominent.The fusion effect is ideal.
作者 仝蕊 康建设 李宝晨 陈疆萍 TONG Rui;KANG Jianshe;LI Baochen;CHEN Jiangping(Unit 93507,Shijiazhuang 050027,China;Shijiazhuang Campus of PLA Army Engineering University,Shijiazhuang 050003,China;Unit 93601,Datong 037006,Shanxi,China)
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2020年第4期7-14,共8页 Journal of Air Force Engineering University(Natural Science Edition)
关键词 信号预处理 多测点信息融合 形态非抽样小波分解 相关峭度 加权融合 signal preprocessing muliti-point information fusion morphological un-decimated wavelet decomposition correlated kurtosis weighted fusion
  • 相关文献

参考文献6

二级参考文献81

  • 1潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615. 被引量:183
  • 2孙卫祥,陈进,伍星,董广明,宁佐贵,王东升,王雄祥.基于信息融合的支撑座早期松动故障诊断[J].上海交通大学学报,2006,40(2):239-242. 被引量:13
  • 3章立军,杨德斌,徐金梧,陈志新.基于数学形态滤波的齿轮故障特征提取方法[J].机械工程学报,2007,43(2):71-75. 被引量:75
  • 4杜秋华,杨曙年.经验模式分解的改进及其对球轴承缺陷的诊断[J].振动.测试与诊断,2007,27(1):67-70. 被引量:7
  • 5Rubini R, Meneghetti U. Application of the Envelope and Wavelet Transform Analyses for the Diagnosis of In- cipient Faults in Ball Bearings [ J ]. Mechanical Systems and Signal Processing,2001,15 (2) :287 - 302.
  • 6Jardine A K S, Lin D, Banjevic D. A Review on Machin- ery Diagnostics and Prognostics Implementing Condi tion - Based Maintenance [ J ]. Mechanical Systems and Signal Processing, 2006, 20(7) : 1 483 - 1 510.
  • 7Nikolaou N G, Antoniadis I A. Rolling Element Bearing Fault Diagnosis Using Wavelet Packets [ J ]. NDT&E In- ternational ,2002, 35 ( 3 ) : 197 - 205.
  • 8Goutsias J, Heijmans H JAM. Nonlinear Multi Resolu- tion Signal Decomposition Schemes, Part 1 :Morphologi- cal Pyramids [ J]. IEEE Transactions on Image Process- ing,2000,9 (11):1 862-1 876.
  • 9Heijmans H JAM, Goutsias J. Nonlinear Multi Resolution Signal Decomposition Schemes, Part 2 : Morphologi- cal Wavelets [ J]. IEEE Transactions on Image Process- ing,2000,9 ( 11 ) : 1 897 - 1 913.
  • 10Zhang J F, Smith J S, Wu Q H. Morphological Un - Decimated Wavelet Decomposition for Fault Location on Power Transmission Lines [ J ]. IEEE Transactions on Circuits and Systems,2006, 53 (6) : 1 395 - 1 402.

共引文献26

同被引文献26

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部