期刊文献+

基于RBF-BP混合神经网络的烧结烟气NOx预测 被引量:12

NOx prediction of sintering flue gas based on RBF-BP hybrid neural network
原文传递
导出
摘要 对烧结烟气NOx生成量进行预测,能为烧结NOx源头和过程减排提供有效指导。利用BP神经网络模型和RBF神经网络模型对烧结烟气NOx进行了预测,在此基础上结合BP模型自适应学习能力强和RBF模型快速收敛的特性,采用优化模型结构、设立连接层的方法,构建RBF-BP混合神经网络模型进行了NOx预测研究,并对3种模型的预测结果进行了对比分析。研究表明,3种神经网络模型中,RBF-BP混合模型的均方根误差为11.37mg/m^3,平均绝对误差为7.14mg/m^3,最大绝对误差为35.47mg/m^3,最小绝对误差为0.0083mg/m^3,各评价指标均为3种模型中最优,混合神经网络模型的预测数据稳定性更好,结果拟合程度更高且收敛速度最快。采用混合模型预测NOx能有效消除烟气NOx生成量反馈延迟。 Prediction of NOx production in sintering flue gas can provide effective guidance for the emission reduction of sintering NOx source and process.BP neural network model and RBF neural network model were used to predict the sintering flue gas NOx.On the basis of analyzing and studying two kinds of neural network models,combining the strong adaptive learning ability characteristics of BP model and the fast convergence characteristics of RBF model,using the method of optimizing model structure and setting up connection layer,the RBF-BP hybrid neural network model is constructed for NOx prediction,and the prediction results of the three models are compared and analyzed.The results show that the RMSE of RBF-BP hybrid model is 11.37mg/m^3,the MAE is 7.14mg/m^3,the maximum absolute error is 35.47mg/m^3,and the minimum absolute error is 0.0083mg/m^3,each evaluation index is the best among the three models.Compared with the other two single neural network models,the hybrid neural network model has better stability of prediction data,higher fitting degree of results and the fastest convergence speed.Predicting NOx by using mixed model can effectively eliminate the feedback delay of flue gas NOx production.
作者 易正明 邓植丹 覃佳卓 刘强 杜东 张东升 YI Zheng-ming;DENG Zhi-dan;QIN Jia-zhuo;LIU Qiang;DU Dong;ZHANG Dong-sheng(Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China;Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China;National-provincial Joint Engineering Research Center of High Temperature Materials and Lining Technology,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China;Shuicheng Iron and Steel Group Co.,Ltd.,Liupanshui 553000,Guizhou,China)
出处 《钢铁研究学报》 CAS CSCD 北大核心 2020年第7期639-646,共8页 Journal of Iron and Steel Research
基金 国家自然科学基金资助项目(51604199)。
关键词 RBF神经网络 BP神经网络 烧结烟气 氮氧化物 预测 RBF neural network BP neural network sintering flue gas nitrogen oxide prediction
  • 相关文献

参考文献19

二级参考文献161

共引文献366

同被引文献111

引证文献12

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部