期刊文献+

基于多元变分模态分解的脑电多域特征提取方法 被引量:5

Multi-Domain Feature Extraction of EEG Based on Multivariate Variational Mode Decomposition
下载PDF
导出
摘要 为提高运动想象脑电信号特征的区分性,提出一种基于多元变分模态分解(MVMD)的多域特征结合脑电特征提取方法。首先利用MVMD对原始脑电多通道数据进行自适应分解,然后从分解得到的固有模态函数(IMF)分量提取信号的时域特征以及非线性动力学特征,同时将IMF分量合并构造新的信号矩阵,并采用共空间模式(CSP)法对重构信号提取空间特征,进行时域、非线性动力学以及空域特征的结合,最后通过支持向量机(SVM)对此特征集分类。所提方法在BCI Competition II Dataset III数据集上达到了89.64%的分类准确率,与现有的方法比较,验证了所提方法的有效性。 To improve the discriminability of the features of motor imagery electroencephalography(EEG)signals,a multi-domain feature extraction method of EEG based on multivariate variational mode decomposition(MVMD)is proposed.Firstly,MVMD is used to adaptively decompose the original EEG multi-channel data.Secondly,extract the time domain characteristics and non-linear dynamic characteristics from the obtained intrinsic mode function(IMF)components,simultaneously the IMF components are constructed as a new signal matrix,and the common spatial pattern(CSP)approach is employed to extract spatial features of the reconstructed signals,and then we combine features with time domain,nonlinear dynamics,and space domain.Finally,this feature set is classified by support vector machine(SVM).The proposed method has achieved a classification accuracy of 89.64%on the BCI Competition II Dataset III,and the effectiveness of the proposed method has been demonstrated by comparing with the existing methods.
作者 孟明 闫冉 高云园 佘青山 MENG Ming;YAN Ran;GAO Yunyuan;SHE Qingshan(School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2020年第6期853-860,共8页 Chinese Journal of Sensors and Actuators
基金 浙江省自然科学基金项目(LY18F030009) 国家自然科学基金项目(61971168,61871427)。
关键词 脑机接口 运动想象 多元变分模态分解 特征提取 Brain-Computer Interface(BCI) motor imagery Multivariate Variational Mode Decomposition(MVMD) feature extraction
  • 相关文献

参考文献7

二级参考文献99

  • 1罗志增,徐斌.基于小波消噪和盲源分离的脑电信号处理方法[J].华中科技大学学报(自然科学版),2011,39(S2):157-160. 被引量:4
  • 2裴晓梅,和卫星,郑崇勋.基于脑电复杂度的意识任务的特征提取与分类[J].中国生物医学工程学报,2005,24(4):421-425. 被引量:11
  • 3Pfurtscheller G, Brunner C, Schlogl A, et al. Mu Rhythm (de) Syn- chronization and EEG Single-Trial Classification of Different Motor Imagery Tasks [ J ]. Neurohnage ,2006,31 ( 1 ) : 153 - 159.
  • 4Wang Y J, Gao X R, Hong B, et al. Practical Designs of a Brain- Computer Interfaces Based on the Modulation of EEG Rhythms [ J ]. Brain-Computer Interfaces, The Frontiers Collection, Springer- Verlag Berlin Heidelberg,2010 : 137-154.
  • 5Varsta M, Heikkonen J, Millan J delR, et al. Evaluating the Per- formance of Three Feature Sets for Brain-Computer Interfaces with an Early Stopping MLP Committee [ C ]//Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, 2000,2:907-910.
  • 6Burke D P, Kelly S P, Chazal P, et al. A Parametric Feature Extrac- tion and Classification Strategy for Brain-Computer Interfacing[ J]. IEEE Transactions on Neural System and Rehabilitation Engineer- ing,2005,13( 1 ) :12-17.
  • 7Pfurstcheller G, Neuper C. Motor Imagery and Direct Brain-Com- puter Communication [ C ]//Proceedings of the IEEE, 2001,89(7):1123-1134.
  • 8Li J, Zhang L Q, Tao D C, et al. A Prior Neurophysiologic Knowl- edge Free Tensor-Based Scheme for Single Trial EEG Classification [ J]. IEEE Transactions on Neural Systems and Rehabilitation En- gineering,2009,17 ( 2 ) : 107-115.
  • 9Zhang H H, Chin Z Y, Ang K K, et al. Optimum Spatio-SpectralFiltering Network for Brain-Computer Interface[ J]. IEEE Transac- tions on Neural Networks,2011,22( 1 ) :52-63.
  • 10Eguiluz V M, Chialvo D R, Cecchi G A, et al. Scale-Free Brain Functional Networks [ J ]. Physical Review Letters, 2005, 94 (018102) :1-4.

共引文献107

同被引文献49

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部