期刊文献+

基于改进粒子群的BP神经网络WSN数据融合算法 被引量:16

Information fusion algorithm based on improved particle swarm BP neural network in WSN
下载PDF
导出
摘要 针对无线传感器网络(WSN)数据融合算法中传统反向传播(BP)神经网络收敛速度慢、对初值敏感和易陷入局部最优解的问题,提出基于改进粒子群的BP神经网络WSN数据融合算法(BSO-BP)。用天牛须搜索(BAS)算法对粒子群算法进行改进,利用改进后的粒子群算法优化BP神经网络权值和阈值,引入WSN数据融合中,簇首节点通过优化训练后的BP神经网络对采集数据进行特征提取,将融合后的数据发送至汇聚节点。仿真实验表明,BSO-BP算法能有效地提高融合精度和收敛速度,减少冗余数据传输,延长网络生命周期。相较于传统BP数据融合算法和PSO-BP算法,BSO-BP算法减少了至少11%的平均相对误差和13.89%的均方根误差。 Back-propagation(BP)neural network has low convergence speed,is sensitive to the initial value,and easily falls into the local optimal solution in data fusion algorithms in wireless sensor network(WSN).To solve these problems,a data fusion algorithm based on improved particle swarm optimization BP neural network in WSN(BSO-BP)is proposed.The beetle antennae search(BAS)algorithm is used to improve the particle swarm optimization.Then the imporved particle swarm optimization is used to optimize the BP neural network weights and thresholds,which are applied to WSN data fusion.The cluster head nodes extract the feature of the collected data by optimizing the trained BP neural network,and send the merged data to the sink node.Simulation results show that BSO-BP algorithm effectively improves the fusion accuracy and convergence speed,decreases the redundant data communication and prolongs network lifetime.BSO-BP algorithm reduces the relative error by 12.4%and the root-mean-square error by 11%,compared to BP and PSO-BP algorithms.
作者 王虹 徐佑宇 谭冲 刘洪 郑敏 WANG Hong;XU Youyu;TAN Chong;LIU Hong;ZHENG Min(Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2020年第5期673-680,共8页 Journal of University of Chinese Academy of Sciences
基金 国家自然科学基金(61401445)资助。
关键词 无线传感器网络 数据融合 BP神经网络 粒子群算法 天牛须搜索算法 wireless sensor networks(WSN) data fusion BP neural network particle swarm optimization beetle antennae search algorithm
  • 相关文献

参考文献9

二级参考文献60

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 2王守觉,曹文明.半导体神经计算机的硬件实现及其在连续语音识别中的应用[J].电子学报,2006,34(2):267-271. 被引量:3
  • 3李成法,陈贵海,叶懋,吴杰.一种基于非均匀分簇的无线传感器网络路由协议[J].计算机学报,2007,30(1):27-36. 被引量:373
  • 4Intanagonwiwat C,Govindan R,Estrin D.Directed Diffusion:a Scalable and Robust Communication Paradigm for Sensor Networks[C]//New York:MobiCom'00,2000:56-67.
  • 5Andr L L de Aquino,Carlos M S Figueiredo,Eduardo F Nakamura,et al.Data Stream Based Algorithms for Wireless Sensor Networks Applications[C]//Ontario:21st International Conference on Advanced Networking and Applications(AINA'07),2007:869-876.
  • 6Heinzelman W,Chandrakasan A,Balakrishnan H.Energy-Efficient Communication Protocols for Wireless Microsensor Networks[C]// Proceedings of 33rd Hawaii International Conference on Systems Science,Washington,DC,2000:8020-8030.
  • 7Reznik L,Von Pless G,AI Karim T.Intelligent Protocols Based on Sensor Signal Change Detection[C]//Proceedings of Systems Communications,2005:443-448.
  • 8van Norden W,de Jong J,Bolderheij F,et al.Intelligent task Scheduling in Sensor Networks[C]//Proceedings of 8th International Conference on Information Fusion,2005.
  • 9Julio Barbancho,Carlos León,F J Molina,et al.Using Artificial Intelligence in Routing Schemes for Wireless Networks[J].Computer Communications,2007,(30):2802-2811.
  • 10Wen-Tsai Sung.Employed BPN to Multi-Sensors Data Fusion for Environment Monitoring Services[J].Autonomic and Trusted Computing,2009,(6):149-163.

共引文献518

同被引文献172

引证文献16

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部