摘要
高精细度光学微腔是强耦合腔量子电动力学(QED)实验系统的核心。然而,受限于光学微腔有限的介入空间,被光学腔俘获的原子内态很难得到有效的初始化处理。通过选用与原子基态及更高阶激发态相互作用的光场,有效避免了微腔腔镜对介入空间的限制,实现了对光学微腔内的原子内态的光泵浦及原子态(自旋极化)的有效制备。同时,基于强耦合光学微腔与腔内不同原子内态的耦合强度差异,建立了一套用于描述和优化腔内原子极化率的模型,最终获得了85%的腔内铯原子的态制备效率。
The high-finesse optical microcavity is the core of a strongly coupled cavity quantum electrodynamics(QED)experimental system.However,due to the limited intervention space of an optical microcavity,it is difficult to obtain an effective initialization treatment to the atomic internal states trapped by the optical cavity.By selecting the light field that interacts with the ground state and a higher-order excited state of the atom,the limitation of the microcavity mirror on the intervention space is effectively avoided,and the optical pumping of the atomic internal states and the preparation of the atomic state(spin polarization)in the optical microcavity are realized.At the same time,based on the difference in coupling strength between optical microcavity and different internal states of atoms,a model for describing and optimizing the atomic polarization rate in the cavity is established and the state preparation efficiency of 85%of cesium atoms in the cavity is finally obtained.
作者
韩星
杨鹏飞
葛瑞芳
贺海
李刚
张鹏飞
张天才
Han Xing;Yang Pengfei;Ge Ruifang;He Hai;Li Gang;Zhang Pengfei;Zhang Tiancai(State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics,Shanxi University,Taiyuan,Shanxi 030006,China;Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan,Shanxi 030006,China)
出处
《中国激光》
EI
CAS
CSCD
北大核心
2020年第8期278-283,共6页
Chinese Journal of Lasers
基金
国家自然科学基金(11634008,11674203,11574187,11974223,11974225)
山西省“1331工程”重点学科建设计划。
关键词
原子与分子物理学
原子自旋极化
光学微腔
强耦合
光泵浦
atomic and molecular physics
atomic spin polarization
optical microcavity
strong coupling
optical pumping