期刊文献+

Fast structured illumination microscopy via deep learning 被引量:15

原文传递
导出
摘要 This study shows that convolutional neural networks(CNNs)can be used to improve the performance of structured illumination microscopy to enable it to reconstruct a super-resolution image using three instead of nine raw frames,which is the standard number of frames required to this end.Owing to the isotropy of the fluorescence group,the correlation between the high-frequency information in each direction of the spectrum is obtained by training the CNNs.A high-precision super-resolution image can thus be reconstructed using accurate data from three image frames in one direction.This allows for gentler super-resolution imaging at higher speeds and weakens phototoxicity in the imaging process.
出处 《Photonics Research》 SCIE EI CSCD 2020年第8期1350-1359,共10页 光子学研究(英文版)
基金 Science and Technology Innovation Commission of Shenzhen(KQTD2015071016560101,KQTD2017033011044403,ZDSYS201703031605029) Natural Science Foundation of Guangdong Province(2016A030312010) Leading Talents Program of Guangdong Province(00201505) National Natural Science Foundation of China(61490712,61622504,61775085,91850202) China Postdoctoral Science Foundation(2019M663048).
  • 相关文献

参考文献3

二级参考文献2

共引文献11

同被引文献50

引证文献15

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部