期刊文献+

Influence of slug flow on flow fields in a gas–liquid cylindrical cyclone separator:A simulation study 被引量:3

下载PDF
导出
摘要 A simulation method for slug flow based on the VOF multiphase flow model was implemented in ANSYS?Fluent via a user-defined function(UDF)and applied to the dissipation of liquid slugs in the inlet pipe of a gas–liquid cylindrical cyclone(GLCC)separator while varying the expanding diameter ratio and angle of inclination.The dissipation of liquid slug in inlet pipe is analyzed under different expanding diameter ratios and inclination angles.In the inlet pipe,it is found that increasing expanding diameter ratio and inclination angle can reduce the liquid slug stability and enhancing the effect of gravity,which is beneficial to slug flow dissipation.In the cylinder,increasing the expanding diameter ratio can significantly reduce the liquid carrying depth of the gas phase but result in a slightly increase of the gas content in the liquid phase space.Moreover,increasing the inclination angle results in a decrease in the carrying depth of liquid in the vapor phase,but enhances gas–liquid mixing and increases the gas-carrying depth in the liquid phase.Taking into consideration the dual effects of slug dissipation in the inlet pipe and carrying capacity of gas/liquid spaces in the cylinder,the optimal expanding diameter ratio and inclination angle values can be determined.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第8期2075-2083,共9页 中国化学工程学报(英文版)
基金 financially supported by the National Science Foundation of China(Nos.51274233,51574273) the Province Natural Science Foundation(Grant No.ZR2014EEM045)。
  • 相关文献

同被引文献16

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部