期刊文献+

基于ERP的智慧电厂大数据深度挖掘与预测模型分析 被引量:1

ERP-based Smart Power Plant big Data Deep Mining and Prediction Model Analysis
下载PDF
导出
摘要 本研究在燃煤火电厂ERP等已有信息系统的基础上,分析智慧管控一体化平台的架构、功能和模型,通过机理算法、专家知识库、大数据分析和挖掘、可视化等手段,提供更有价值的诊断、报警、预测和决策信息,以实现火电厂经济效益最大化。结果表明电厂侧设备的五个维度评价指标包括健康状态、风险状态、寿命状态、能效指标、排放指标。锅炉3D可视化量化监测模型包括结焦可视化与分级量化评估模型、四管可视化防磨防爆模型、锅炉四管减薄预测模型、氧化皮生成分析与预警模型、管道热疲劳裂纹分析、四管剩余寿命评估与泄漏预警模型。基于智能状态监测与智慧决策,状态检修可取代计划检修。 Based on existing information systems such as ERP in coal-fired power plants,this research analyzes the architecture,functions and models of the integrated intelligent management and control platform,and uses mechanism algorithms,expert knowledge bases,big data analysis and mining,and visualization.Provide more valuable diagnosis,alarm,forecast and decision information to maximize the economic benefts of thermal power plants.The results show that the five-dimensional evaluation indicators of power plant-side equipment include health status,risk status,life status,energy efficiency indicators,and emission indicators.Boiler 3D visualization and quantitative monitoring models include coking visualization and hierarchical quantitative evaluation models,four-tube visualization anti-wear and explosion-proof models,boiler four-tube thining prediction models,oxide scale generation analysis and early warning models,pipeline thermal fatigue crack analysis,and four-tube remaining life evaluation With leak warning model.Based on intelligent condition monitoring and intelligent decision-making,condition maintenance can replace planned maintenance.
作者 赵俊杰 罗立权 史松宝 项锋 杨如意 Zhao Jun-jie;Luo Li-quan;Shi Song-bao;Xiang Feng;Yang Ru-yi
出处 《今日自动化》 2020年第3期95-97,共3页 Automation Today
关键词 火电厂ERP 生产运营管理 大数据分析 模型算法 专家知识库 智慧决策 thermal power plant ERP production and operation managenent big data analysis model algorithm expert knowledge base smart decision
  • 相关文献

参考文献7

二级参考文献65

共引文献275

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部