摘要
里奥滤光器广泛应用于太阳观测中进行光谱扫描成像,为保证其数据的有效性与准确性,必须定期对其进行在线标定。传统的在线标定方法要求环境光强具有较高稳定性,而本文提出了一种能够实时修正由环境扰动导致的太阳光强变化对标定过程影响的里奥滤光器在线标定方法。该方法通过单色光成像观测通道与里奥滤光器扫描成像观测通道联合观测的方式,以单色光成像通道的观测结果获得外界环境对太阳光强扰动的信息,在线校正滤光器的观测扫描数据,降低由环境扰动造成的太阳光强非稳定性带来的干扰。基于七波段太阳大气层析成像系统,对Hɑ(656.28 nm)扫描成像通道的里奥滤光器和Ti O(705nm)单色光成像通道进行了联合观测标定实验。实验结果表明,该方法有效消除了太阳光强非稳定性对滤光器实测光谱轮廓的影响,对中心波长位置定标精度优于0.005 nm,提升了里奥滤光器在线标定的准确性和对环境的适应性。
Lyot filter is widely used in solar observation for spectra-scanning imaging.Calibration experiment at regular intervals is an important work to assure the accuracy and validity of Lyot filter.This paper comes up with a new method to conduct the Lyot filter calibration experiment on-line while traditional method requires perfect stability of environment.This method uses monochromatic imaging channel and Lyot filter scanning imaging channel simultaneously,and corrects the scanning data with monochromatic imaging data to correct the impact of environment.The instability of light source caused by disturbance of observation environment is reduced.We apply the calibration method in the high-resolution multi-wavelength solar imaging system to calibrate the Lyot filter in Hɑ(656.28)scanning imaging channel and correct the scanning data with Ti O band(705 nm)observation data.The result shows that this method successfully eliminate the impact of the light instability on scanning curve of Lyot filter.The difference between the ideal center and the true center of the filter is more than 0.005 nm.The accuracy of the calibration experiment and the adaptability to environment are promoted.
作者
王佳
刘洋毅
饶长辉
Wang Jia;Liu Yangyi;Rao Changhui(Institute of Optics and Electronics,Chinese Academy Science,Chengdu,Sichuan 610209,China;The Key Laboratory on Adaptive Optics,Chinese Academy of Sciences,Chengdu,Sichuan 610209,China;University of Chinese Academy of Sciences,Beijing 100049,Chin)
出处
《光电工程》
CAS
CSCD
北大核心
2020年第9期12-19,共8页
Opto-Electronic Engineering
基金
国家自然科学基金资助项目(11727805,11733005)。
关键词
里奥滤光器
标定实验
太阳多波段观测
在线校正
Lyot filter
calibration experiment
multi-wavelength solar observation
on-line correction