期刊文献+

基于视频监控的快速行人检测算法 被引量:3

Pedestrian Fast Detection Algorithm Based on Video Surveillance
下载PDF
导出
摘要 针对方向梯度直方图(Histogram of Oriented Gradient,HOG)和支持向量机(Support Vector Machine,SVM)对行人检测速度慢、效率低和实时性差的问题,提出了先利用混合高斯模型进行运动检测初判,从而获得候选区,调整候选区域尺寸,对候选区进行HOG特征提取,再送入SVM分类器检测出行人。只对候选区进行HOG特征提取可大幅度减少HOG的计算量,减少特征提取的时间,从而提高了检测的效率,可应用于有实时性要求的场合。 To address the issues of slow speed,low efficiency and poor real-time performance of HOG and SVM in pedestrian detection,a mixture Gaussian model is proposed to make preliminary judgment of pedestrian detection,so as to obtain candidate areas,adjust the size of candidate areas,extract the HOG feature from the candidate areas,and then send it to the SVM classifier for pedestrian detection.Performing HOG feature extraction only for the candidate areas significantly reduces the calculation amount of HOG and reduces the time of feature extraction,thus improving the detection efficiency.The algorithm can be applied in situations with real-time requirements.
作者 谢敏 XIE Min(Tongda College,Nanjing University of Posts and Telecommunications,Yangzhou 225000,China)
出处 《无线电工程》 2020年第10期835-838,共4页 Radio Engineering
基金 南京邮电大学通达学院科研基金项目(XK201XZ19012)。
关键词 方向梯度直方图 支持向量机 行人检测 混合高斯模型 HOG SVM pedestrian detection mixture Gaussian model
  • 相关文献

参考文献9

二级参考文献71

  • 1Papageorgiou C,Poggio T.A trainable system for object detection[J].International Journal of Computer Vision,2000,38(1):15-33.
  • 2Dalal N,Triggs B.Histograms of oriented gradients for human detection[C]//IEEE Conference on Computer Vision and Pattern Recognition,San Diego,CA,USA,2005:886-893.
  • 3Zhu Q,Yeh M C,Cheng K T,et al.Fast human detection using a cascade of histograms of oriented gradients[C]//IEEE Conference on Computer Vision and Pattern Recognition,New York,USA,2006:1491-1498.
  • 4Wang Xiaoyu,Han Tony X,Yan Shuicheng.An HOG-LBP human detector with partial occlusion handling[C]//IEEE International Conference on Computer Vision,Kyoto,Japan,2009:32-39.
  • 5Viola P,Jones M.Rapid object detection using a boosted cascade of simple features[C]//IEEE Conference on Computer Vision and Pattem Recognition,USA,2001:511-518.
  • 6Mu Yadong,Yan Shuicheng,Liu Yi,et al.Discriminative local binary patterns for human detection in personal album[C]//IEEE Conference on Computer Vision and Pattern Recognition,Anchorage,AK,USA,2008:1-8.
  • 7Mohan A,Papageorgiou C,Poggio T.Example-based object detection in images by components[C]//IEEE Transactions on PAMI,2001:349-360.
  • 8Zhang Wenchao,Shan Shiguang,Gao Wen,et al.Local Gabor binary pattern histogram sequence (LGBPHS):a novel non-statistical model for face representation and recognition[C]//IEEE Intemational Conference on Computer Vision,Beijing,China,2005:786-791.
  • 9Schwartz W R,da Silva R D,Davis L S,et al.A novel feature descriptor based on the Shearlet transform[C]//IEEE International Conference on Image Processing,Brussels,Belguim,2011:1053-1056.
  • 10Rosipal R,Kramer N.Overview and recent advances in partial least squares[J].Lecture Notes in Computer Science,2006,(3940):34-51.

共引文献70

同被引文献29

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部