期刊文献+

推拉式小车法制备单层硒化钨薄膜

Preparation of monolayer tungsten selenide film by trolley based chemical vapor deposition method
下载PDF
导出
摘要 为了提升单层硒化钨(WSe2)薄膜的制备质量,在传统化学气相沉积(CVD)法制备的基础上进行改进,通过引入推拉式小车来制备单层WSe2薄膜,从而构造出可以调控沉积区域、精确控制生长时间,并可实现快速降温的生长方式。采用光学显微镜和原子力显微镜来表征制备材料的尺寸、荧光强度、形貌结构等特性,证明了利用推拉式小车法可成功制备出高质量的单层WSe2薄膜。推拉式小车法可以稳定制备大面积、高质量、单层的WSe2薄膜,为其在信息、能源、生物等前沿领域的应用提供参考。 In order to improve the preparation quality of monolayer(ML)tungsten selenide(WSe2).We improve the traditional chemical vapor deposition(CVD)method.ML WSe2 film is prepared by introducing a trolley to construct a growth method that can regulate the deposition area,precisely control the growth time,and achieve rapid temperature reduction.Optical microscope and atomic force microscope are used to characterize the size,fluorescence intensity and morphology of the prepared materials,which proved that a high-quality ML WSe2 film is successfully prepared by the push-pull trolley method.The large-area,high-quality,single-layer WSe2 film can be stably prepared by the trolley based method,which provides an important basis for its future application in the information,energy,and biology frontier fields.
作者 曹元广 于佳鑫 CAO Yuanguang;YU Jiaxin(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai,200093,China)
出处 《光学仪器》 2020年第4期88-94,共7页 Optical Instruments
基金 国家自然科学基金(NSFC11604210)。
关键词 单层WSe2薄膜 化学气相沉积法 高质量 推拉式小车 monolayer WSe2 film chemical vapor deposition high quality trolley
  • 相关文献

参考文献1

二级参考文献64

  • 1Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
  • 2Huang, X.; Tan, C.; Yin. Z.; Zhang, H. Ach: Mate1: 2014, 26, 2185.
  • 3Xu, M.; Liang, T.; Shi, M.: Chen, H. CIwm. Rev: 2013, 113, 3766.
  • 4Tan, C.; Zhang, H. Chem. Soc. Rev. 2015, 44, 2713.
  • 5Sasaki, T.: Watanabe, M.: Hashizume, H.: Yamada, H.: Nakazawa, H. J. Am. Chem. Soc. 1996, 118, 8329.
  • 6Coleman, J. N., Lotya, M.: O'NeilL A.: Bergin, S. D.: King, R J.: Khan, U.: Young, K.; Gaucher, A.: De, S.; Smith, R. ,I.: Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallain, T.; Boland, J. J.; Wang, J. J.: Donegan, J. F.: Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.: Perkins, J. M.: Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nieolosi, V. Science 2011, 331,568.
  • 7Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H. Angew. Chem. Int. Ed. 2011, 50, 11093.
  • 8Ma, R.; Liu, Z.; Takada, K.; lyi, N.; Bando, Y.: Sasaki, T. J. Am. Chem. Soc. 2007, 129, 5257.
  • 9Wang, H.; Yu, L.; Lee, Y.-H.; Shi, Y.; Hsu, A.; Chin, M. L.; Li, L.-J.; Dubey, M.; Kong, J.; Palacios, T. Nano LetL 2012, 12, 4674.
  • 10Roy, K.: Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G4 Raghavan, S.; Ghosh, A. Nat. Nanotechanl. 2013, 4, 826.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部