期刊文献+

迁移学习技术及其在医疗领域中的应用 被引量:4

Transfer Learning Technology and Its Application in Medical Field
下载PDF
导出
摘要 迁移学习技术是一种将源域中的知识迁移到目标域任务上的新的机器学习方法,较好地解决了机器学习方法在医疗领域应用时缺少足够的有标签数据的情况。本文首先按照迁移学习方法的分类介绍了不同迁移学习方法的基本思想,并回顾了基于实例、特征、模型、关系的迁移学习研究进展。其次,结合实际案例,重点介绍了迁移学习在医疗文本数据处理,基于文本、图像、语音的疾病诊断中的应用。最后,对在医疗领域有发展潜力的迁移学习方法进行了应用展望。本文对于更好地解决传统机器学习或深度学习方法在医疗领域中的局限性提供了参考,对相关领域的工作者具有一定的借鉴价值。 Transfer learning technology is a new machine learning method that transfers knowledge from source domain to target domain.It solves the problem that machine learning methods lack enough labeled data when applied in medical field.Firstly,according to the classification of transfer learning methods,the basic ideas of different transfer learning methods were introduced,and the research progress of transfer learning based on case,feature,model and relationship was reviewed in this paper.Secondly,combined with practical cases,the application of migration learning in medical text data processing and disease diagnosis based on text,image and voice were mainly introduced.Finally,the application prospect of transfer learning method which has potential in the medical field was presented.This paper provides a reference for solving the limitations of traditional machine learning or deep learning methods in the medical field,and can be referredbyresearchers in related fields.
作者 吴骋 秦婴逸 李冬冬 王志勇 WU Cheng;QIN Yingyi;LI Dongdong;WANG Zhiyong(Department of Military Health Statistics,Naval Medical University,Shanghai 200433,China;Department of Information,First Affiliated Hospital,Naval Medical University,Shanghai 200433,China)
出处 《中国医疗设备》 2020年第9期161-164,172,共5页 China Medical Devices
基金 上海市自然科学基金(19ZR1469800) 全军后勤科研重大项目子题(AWS15J005-4) 海军军医大学第一附属医院“234学科攀峰计划”(2019YBZ002)。
关键词 迁移学习 医疗领域 机器学习 深度学习 transfer learning medical field machine learning deep learning
  • 相关文献

参考文献5

二级参考文献152

  • 1黄海林,王为民.CD4+CD25+T调节性细胞与肿瘤[J].实用肿瘤学杂志,2006,20(1):65-68. 被引量:4
  • 2秦铁军,秘营昌,冯四洲,李大鹏,魏嘉璘,杨栋林,韩明哲,王建祥,卞寿庚.急性白血病中性粒细胞减少患者应用喹诺酮类药物预防感染的临床研究[J].中华医学杂志,2007,87(20):1389-1393. 被引量:3
  • 3王悦,李玉皓,李小洁,曾彬,张园,彭茜,杨荣存.体外抑制肿瘤JAK/STAT通路探讨STAT4对肿瘤免疫的影响[J].南开大学学报(自然科学版),2007,40(3):102-105. 被引量:4
  • 4Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 5Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 6Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 7Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 8Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 9Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 10Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].

共引文献511

同被引文献20

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部