摘要
机器人在非铺装路面行驶时,不可避免地会引起机体位姿(位置与姿态)改变,路面会对机体以及机载设备产生破坏冲击,为减小机体与机载设备的振动,设计了一款具有慢主动悬架结构的轮腿式全地形移动机器人(WLATMR),并验证了其隔振性能。为实现整机位姿闭环控制,首先基于运动学与动力学建立考虑悬架影响的整机位姿模型,分析悬架影响对机身位姿的影响,然后通过PI控制实现SIMULINK与ADAMS的联合仿真,对比分析模型优化前、后(优化前:忽略悬架影响,优化后:考虑悬架影响)的整机位姿控制效果。结果表明,优化前、后WLATMR的位姿跟踪效果相差不大,但是优化后的模型能够有效降低对作动器工作速度、工作位移等性能的要求。最后,通过调整PI参数使模型优化前、后的作动器工作速度相同,在此条件下再次仿真,结果表明优化后模型能够有效改善系统的瞬态响应性能指标,验证了模型及算法的正确性,同时为机器人增加隔振悬架系统提供了理论参考。
In order to reduce the vibration of robot body and its carrying equipment,a Wheeled Legged All Terrain Mobile Robot(WLATMR) with slow active suspension structure is designed. The vibration isolation performance of WLATMR is verified. In order to realize the closed-loop control of the position and attitude of the robot,first,the model of considering suspension displacement is established based on kinematics and dynamics,and the influence of suspension displacement on the position and attitude is analyzed. Then,the co-simulation of SIMULINK and ADAMS is realized by PI control,and the effect of the control of the robot before and after optimization(before optimization,the suspension displacement is ignored,while after optimization,the suspension displacement is considered)is compared and analyzed.The results show that the effect of WLATMR position and attitude tracking before and after optimization is not very different,but the optimized model can effectively reduce the performance requirements of the actuator,such as working speed,working displacement,etc. Finally,by adjusting PI parameters,the working speed of the actuator before and after optimization is the same. Under this condition,the simulation results show that the optimized model can effectively improve the transient response of the system,and verify the correctness of the model and algorithm.
作者
马芳武
倪利伟
魏路路
徐广健
葛林鹤
聂家弘
吴量
MA Fang-wu;NI Li-wei;WEI Lu-lu;XU Guang-jian;GE Lin-he;NIE Jia-hong;WU Liang(College of Aulomotive Engineering,Jilin Universily,Changchun 130022,China;State Key Laboratory ofAutomotive Simulation and Control,Jjilin University,Changchun 130022,China)
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2020年第4期1503-1516,共14页
Journal of Jilin University:Engineering and Technology Edition
基金
国家重点研发计划项目(2017YFC0601604)
国家自然科学基金项目(51705185)
吉林省科技发展计划项目(20190103056JH)。
关键词
机器人
隔振悬架
位姿闭环控制
联合仿真
robot
isolation suspension
position and attitude closed-loop control
co-simulation