期刊文献+

引入动态调节学习率的SAE轴承故障诊断研究 被引量:10

Roller Bearing Fault Diagnosis Based on Stacked Auto-encoder with Dynamic Learning Rate
下载PDF
导出
摘要 为提高轴承故障分类收敛速度和分类精度,提出一种动态调节学习率的堆叠自编码网络(SAE)。初始时刻给予一个较大的学习率,迭代过程中利用当前重构误差动态调节学习率的大小,根据重构误差梯度的正负值给出两种不同的学习率减小策略,使学习率大小更符合网络当前的运行状态,最后通过不同的有标签数据量进行反向微调,验证故障分类识别的准确率。实验结果表明:相比固定学习率,该动态调节学习率SAE网络预训练收敛时间减少17.70%,重构误差下降22.92%,故障分类准确率得到提高,且能在保持分类准确率的前提下,减少有标签样本量。 In order to obtain better convergence speed and classification accuracy of bearing fault classification,a Stacked Auto-Encoder(SAE)with dynamic adjustment of learning rate is proposed.In the following iteration,the gradient of the current reconstruction error is used to dynamically adjust the learning rate.According to the positive and negative value of the reconstruction error gradient,two different learning rate reduction strategies are given to make the learning rate more consistent with the current operation of the model.Finally,the accuracy of fault classification and recognition is verified by reverse fine-tuning of different labeled data quantities.The experimental results show that:compared with the fixed learning rate,the dynamic adjusted learning rate reduces 17.70%of the pre training convergence time,22.92%of the reconstruction error,improves the accuracy of fault classification,and reduces the number of labeled samples on the premise of maintaining the accuracy of classification.
作者 唐魏 郑源 潘虹 徐晶珺 TANG Wei;ZHENG Yuan;PAN Hong;XU Jingjun(College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China;Institute of Innovation,Hohai University,Nanjing 210098,China;College of Energy and Electrical,Hohai University,Nanjing 211100,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第20期264-269,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.51809082,No.51769035)。
关键词 自编码 深度学习 故障诊断 滚动轴承 动态学习率 auto-encoder deep learning fault diagnosis rolling bearing dynamic learning rate
  • 相关文献

参考文献17

二级参考文献109

  • 1杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:145
  • 2伍奎,李润方,刘景浩.智能化系统的知识表达与推理机制[J].机械工程学报,2005,41(5):98-103. 被引量:19
  • 3袁胜发,褚福磊,何永勇.基于网格支持矢量机的涡轮泵多故障诊断[J].机械工程学报,2007,43(4):152-158. 被引量:9
  • 4刘永斌,龙潜,冯志华,刘维来.一种非平稳、非线性振动信号检测方法的研究[J].振动与冲击,2007,26(12):131-134. 被引量:37
  • 5GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 6HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 7KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 8BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 9WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 10BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.

共引文献639

同被引文献142

引证文献10

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部