期刊文献+

基于注意力机制和LSTM的电力通信设备状态预测 被引量:3

Attention and LSTM Based State Prediction of Equipment on Electric Power Communication Networks
下载PDF
导出
摘要 随着电力通信网络的快速增长,网络中通信设备的在线状态预测对于提升运维可靠性具有重要意义。在实际场景中,设备工作数据来源复杂,往往存在数据维度高、特征稀疏且模式重复等问题,导致传统的预测方法性能非常受限。本文提出一种基于注意力机制和LSTM(长短时记忆)模块的设备状态预测模型。模型训练分2阶段进行,保证注意力机制能够通过端到端学习对原始特征进行充分降维并提取出最相关的信息进行状态预测。基于电力通信网络真实运维数据进行一系列验证实验,结果表明所提方法在设备状态预测问题中的有效性。 With the rapid growth of electric power communication networks,the importance of predicting the working state of online equipment is increasing as well.Since the running data of typical communication devices always come from heterogeneous resources,the prediction models have to be learned from features with high dimension,high sparsity as well as repetitive patterns.This problem severely restricts the performance of conventional machine learning approaches.This paper proposes a novel state prediction model based on the integration of attention mechanism and LSTM(Long Short-Term Memory).By a two-stage learning strategy,the attention mechanism can achieve both dimensionality reduction and feature extraction of original input.Meanwhile,most related features are extracted for final prediction from the end-to-end learning.Extensive experimental results on practical running data of electric power communication networks demonstrate that,the proposed method has high performance in the working state prediction problem.
作者 吴海洋 陈鹏 郭波 蒋春霞 李霁轩 朱鹏宇 WU Hai-yang;CHEN Peng;GUO Bo;JIANG Chun-xia;LI Ji-xuan;ZHU Peng-yu(Information and Communication Branch,State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 210024,China)
出处 《计算机与现代化》 2020年第10期12-16,共5页 Computer and Modernization
基金 国网江苏省电力有限公司科技项目(SGJSXT00DDJS1900167)。
关键词 注意力 长短时记忆 神经网络 设备状态预测 attention LSTM neural networks state prediction of equipment
  • 相关文献

参考文献5

二级参考文献30

  • 1许参,李杰,王超.一种锂离子蓄电池寿命的预测模型[J].应用科学学报,2006,24(4):368-371. 被引量:5
  • 2沈稼丰,董艳杰,周美兰,马春连.铅蓄电池的容量测试和寿命预测[J].哈尔滨电工学院学报,1996,19(4):433-436. 被引量:3
  • 3李立伟,原明亭,包书哲.基于改进灰色模型的蓄电池剩余容量预测[J].电源技术,2006,30(12):1006-1008. 被引量:5
  • 4Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 5Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 6Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 7Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 8Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.
  • 9Smola A J. Regression estimation with support vector learning machines[D]. Technische Universit"at M" unchen.1996.
  • 10Vapnik V N. The nature of statistical learning theory[M]. New York:Springer, 1995.

共引文献2665

同被引文献35

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部