期刊文献+

基于GAPSO-SVM的钣金零件图像识别方法 被引量:4

Image Recognition Method for Sheet Metal Parts Based on GAPSO-SVM
下载PDF
导出
摘要 为了实现视觉引导装配过程中钣金零件图像的识别,对零件图像进行预处理,提取形状特征,将遗传算法的交叉变异操作引入粒子群算法,形成遗传粒子群算法。采用遗传粒子群算法同时进行支持向量机的参数优化和特征选择。实验表明,将所选用特征由初始的12维降维到3维,测试集识别准确率100%,完全满足零件识别分类的要求。 To realize the image recognition of the sheet metal parts in the visual guided assembly process,the image of the part is preprocessed,the shape feature is extracted,and the cross and mutation operation of the genetic algorithm is introduced into the particle swarm optimization,which is used to form genetic particle swarm optimization.This algorithm is used to optimize parameters and select the feature for support vector machines.Experiments show that the selected features are reduced from the initial 12-dimensional dimension to 3 dimensions,and the test set recognition accuracy is 100%.It fully meets the requirements of part identification and classification.
作者 方舟 程筱胜 崔海华 石诚 韦号 FANG Zhou;CHENG Xiaosheng;CUI Haihua;SHI Cheng;WEI Hao(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《机械制造与自动化》 2020年第5期116-118,122,共4页 Machine Building & Automation
关键词 零件识别 支持向量机 粒子群算法 遗传算法 part identification suppor vector machine particle swarm optimization genetic algorithm
  • 相关文献

参考文献9

二级参考文献79

共引文献161

同被引文献16

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部