期刊文献+

基于深度学习的COVID-19疫情期间网民情绪分析 被引量:4

Sentiment Analysis of Netizens During the COVID-19 Epidemic Based on Deep Learning
下载PDF
导出
摘要 微博文本情绪分析技术在舆情监控等领域具有广泛应用。基于传统机器学习模型和情感词典进行情感分析的结果往往不够理想,如何提升性能成为该领域的一个主要挑战。本文中我们使用了基于深度学习的BERT以完成语言理解任务并与传统做法性能相比较,结果中BERT模型取得了更好的性能。之后我们利用该模型进行三分类以分析COVID-19疫情期间的微博评论,总体上正面与中立情绪占主导。此外,我们也针对词频和词云进行相关分析,以期实现全方面了解此次疫情期间社会情感状态的目的。 Sentiment analysis of microblog text is widely used in public opinion monitoring and other fields.The results of sentiment analysis based on traditional machine learning models and sentiment dictionaries are often not ideal.How to improve performance has become a major challenge in this field.In this thesis,we use BERT based on deep learning to complete the language understanding task.Compared with traditional methods,BERT model has achieved better performance.We use the model to analyze microblog comments during the COVID-19 epidemic by conducting a three-category classification and find that positive and neutral emotions are dominant.We also conduct further analysis on word frequency and word cloud to gain more insights into the emotional states during the epidemic.
作者 刘洪浩 LIU Hong-hao(College of International Education,Henan University,Kaifeng 475000,China)
出处 《软件》 2020年第9期185-188,共4页 Software
关键词 深度学习 词嵌入 BERT模型 情感分析 微博爬虫 文本处理 Deep learning Word embedding BERT Sentiment analysis Microblog crawler Text processing
  • 相关文献

参考文献10

二级参考文献70

  • 1钱爱兵,江岚.基于改进TF-IDF的中文网页关键词抽取——以新闻网页为例[J].情报理论与实践,2008,31(6):945-950. 被引量:29
  • 2张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 3刘毅.略论网络舆情的概念、特点、表达与传播[J].理论界,2007(1):11-12. 被引量:312
  • 4中国互联网络信息中心.中国互联网络发展状况统汁报告[EB/OL].[2013-07-20].http://www.cnnic.en/htwfzyj/hlwxzb{2/hlwtjpg/201307/P020130717505343100851.pdf.
  • 5Go A, Bhayani R, Huang L. Twitter sentiment classification using distant supervision [ R ]. Stanford: Stanford University, 2009 : 1 -12.
  • 6Li G, Hoi S C It, Chang K, et al. Micro-blogging sentiment detection by eollaborative online learning [ C ]//Data Mining (ICDM), 2010 IEEE 10th International Conference on. Sydney: IEEE, 2010:893-898.
  • 7Parikh R, Movassate M. Sentiment analysis of user-generated Twitter updates using various classification techniques [ R ]. Stanford:Stanford University, 2009.
  • 8Davidov D, Tsur O, Rappoport A. Enhanced sentiment learning using Twitter hashtags and smileys [ C ]//Proceedings of the 23rd International Cnnference on Computational Linguistics: Posters. Beijing: Association for Computational Linguistics, 2010: 241 - 249.
  • 9Joshi A, Balamurali A R, Bhattacharyya P, et al. C-Feel-It: A sentiment analyzer for micrn-blogs [ C ]//Proeeedings of the ACI,- HLT 2011 System Demonstrations. Portland: Association for Computational l.inguistics,2011 : 127 - 132.
  • 10Weng J, Lira E P, Jiang J, et al. Twitterrank: Finding topic- sensitive intluential twitterers[ C ]//Proceedings of lhe Third ACM International Conference on Weh Search and Data Mining. New York: ACM, 2010:261 -270.

共引文献102

同被引文献43

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部