期刊文献+

一种改进匹配点对选取策略的ElasticFusion室内三维重建算法 被引量:11

Elastic Fusion for Indoor 3D Reconstruction with an Improved Matching Points Selection Strategy
原文传递
导出
摘要 对室内场景进行实时高质量的三维重建是机器人、增强现实等领域关注的重点。目前基于RGB-D传感器的三维重建方法存在局部模型重建效果差、点云模型包含孔洞等问题。而影响三维模型重建效果的主要因素有两个,一是由点云配准解算出的位姿参数精度,二是闭环检测准确程度。对此,在保证算法实时性的基础上,通过改进迭代最近点算法(iterative closest point algorithm,ICP)中匹配点的选取策略,提升模型重建效果。并利用径向基函数构建隐式曲面的方式对点云模型中的孔洞进行事后修补。选用ICL-NUIM等公开数据集进行实验验证,结果表明,改进后的算法在模型重建效果以及相机轨迹估计方面均有显著提升。 Real-time and high-quality 3 D reconstruction of indoor scenes has been a research focus in the field of augmented reality and robotics.However,the 3 D reconstruction methods using RGB-D sensors suffer from weaknesses such as poor local model quality and producing holes in points cloud models.The two key factors that affect the quality of 3 D reconstruction are the accuracy of the pose parameters derived from points cloud registration and the accuracy of loop closure.Firstly,an improved ElasticFusion algorithm is proposed to achieve better reconstruction quality in real time,which is achieved by improving the strategy of searching matching points in the iterative closest point(ICP)algorithm.Furthermore,radial basis functions are used to construct implicit surfaces in order to fill holes in the point clouds models that are generated in the previous step.In the end,benchmarks such as ICL-NUIM are used to evaluate the proposed algorithm.The experimental results have shown that our algorithm can significantly improve the quality of model reconstruction and the accuracy of the camera trajectory estimation.
作者 王玮琦 游雄 杨剑 李钦 WANG Weiqi;YOU Xiong;YANG Jian;LI Qin(Institute of Geospatial Information,Information Engineering University,Zhengzhou 450052,China)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2020年第9期1469-1477,共9页 Geomatics and Information Science of Wuhan University
基金 国家重点研发计划(2017YFB0503500) 河南省科技创新计划(142101510005) 国家自然科学基金青年基金(41801317)。
关键词 ElasticFusion算法 三维重建 ICP算法 孔洞修补 ElasticFusion 3D reconstruction ICP algorithm hole repairing
  • 相关文献

参考文献5

二级参考文献125

  • 1孙殿柱,朱昌志,李延瑞.散乱点云边界特征快速提取算法[J].山东大学学报(工学版),2009,39(1):84-86. 被引量:15
  • 2邱泽阳,宋晓宇,张定华.离散数据中的孔洞修补[J].工程图学学报,2004,25(4):85-89. 被引量:7
  • 3杜佶,张丽艳,王宏涛,刘胜兰.基于径向基函数的三角网格曲面孔洞修补算法[J].计算机辅助设计与图形学学报,2005,17(9):1976-1982. 被引量:42
  • 4陈飞舟,陈志杨,丁展,叶修梓,张三元.基于径向基函数的残缺点云数据修复[J].计算机辅助设计与图形学学报,2006,18(9):1414-1419. 被引量:31
  • 5张洁,岳玮宁,王楠,汪国平.三角网格模型的各向异性孔洞修补算法[J].计算机辅助设计与图形学学报,2007,19(7):892-897. 被引量:24
  • 6Henry R Krainin M, Herbst E, et al. RGB-D mapping: Us- ing depth cameras for dense 3D modeling of indoor environ- ments[C ]//RSS Workshop on RGB-D Cameras. 2010.
  • 7Fioraio N, Konolige K. Realtime visual and point cloud S- LAM[C]//RSS Workshop on RGB-D Cameras. 2011.
  • 8Izadi S, Kim D, Hilliges O, et al. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera [C]//Proceedings of the 24th Annual ACM Symposium on Us- er Interface Software and Technology. New York, USA: ACM, 2011: 559-568.
  • 9Newcombe R A, Izadi S, Hilliges O, et al. KinectFusion: Real- time dense surface mapping and tracking[C]//10th IEEE Inter- national Symposium on Mixed and Augmented Reality. Piscat- away, USA: IEEE, 2011: 127-136.
  • 10Zeng M, Zhao F K, Zheng J X, et al. Octree-based fusion for realtime 3D reconstruction[J]. Graphical Models, 2013, 75(3): 126-136.

共引文献211

同被引文献110

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部