期刊文献+

基于K-means最佳聚类的间歇过程故障诊断方法 被引量:2

Intermittent Process Fault Diagnosis Method Based on K-means Optimal Clustering
原文传递
导出
摘要 在多时段间歇过程中,过程特性区域存在于两个相邻时段间的模糊过渡区域中。若不能准确将过渡时段提取出来,在采用多向主元分析(MPCA)方法进行故障诊断与分析过程中容易产生误判。为此,提出了一种基于K-means最佳聚类的间歇过程故障诊断方法。该方法首先在传统软时段划分中加入K-means最佳聚类方法,提高了子时段与过渡时段的区分度;然后利用MPCA诊断方法进行诊断分析。此方法提高了过渡时段的区分度,进而提升了故障诊断的精度。通过机床设备加工数据的仿真实验,证明了方法的有效性。 The process characteristic region exists in the fuzzy transition region between two adjacent time periods in the multi-period intermittent process.If the transition period cannot be extracted accurately,misjudgment will easily occur during the process of fault diagnosis and analysis using multi-directional principal component analysis(MPCA).Therefore,an intermittent process fault diagnosis method which based on K-means optimal clustering is proposed.Firstly,the K-means optimal clustering method is added to the traditional soft time division to improve the discrimination between sub-period and transition period.On this basis,the MPCA diagnosis method is used to perform diagnostic analysis and simulation experiment on processing data with machine tool equipment.This method improves the discrimination of transition period,and further improves the accuracy of fault diagnosis.The results of the experiment confirmed the effectiveness of the method.
作者 邵盟雅 吕锋 宋学君 郭振兴 SHAO Meng-ya;LV Feng;SONG Xue-juna;GUO Zhen-xing(College of Physics,Hebei Normal University,Shijiazhuang 050024,China;Hebei Key Laboratory of Photophysics Research and Application,Hebei Normal University,Shijiazhuang 050024,China;College of Career Technology,Hebei Normal University,Shijiazhuang 050024,China)
出处 《控制工程》 CSCD 北大核心 2020年第9期1642-1648,共7页 Control Engineering of China
基金 国家自然科学基金项目(61673160,60974063,61175059) 河北省自然科学基金项目(F2018205102) 河北省自然科学基金(F2018205178) 河北省教育厅项目(ZD2016053) 教育部“春晖计划”合作科研项目(Z20177023)。
关键词 MPCA K-MEANS 最佳聚类 软时段划分 故障诊断 MPCA K-means best clustering soft time segment fault diagnosis
  • 相关文献

参考文献5

二级参考文献52

  • 1覃祖旭,张洪钺.信息融合的一般过程及在故障诊断中的应用[J].测控技术,1995,14(3):15-18. 被引量:22
  • 2陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 3颜学峰.基于径基函数-加权偏最小二乘回归的干点软测量[J].自动化学报,2007,33(2):193-196. 被引量:10
  • 4CALINSKI R,HARABASZ J.A dendrite method for cluster analysis[J].Communications in Statistics,1974,3(1):1 -27.
  • 5DAVIES D L,BOULDIN D W.A cluster separation measure[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,1(2):224-227.
  • 6DUDOIT S,FRIDLYAND J.A prediction-based resampling method for estimating the number of clusters in a dataset[J].Genome Biology,2002,3(7):1-21.
  • 7DIMITRIADOU E,DOLNICAR S,WEINGESSEL A.An examination of indexes for determining the number of cluster in binary data sets[J].Psychometrika,2002,67(1):137-160.
  • 8KAPP A V,TIBSHIRANI R.Are clusters found in one dataset present in another dataset?[J].Biostatistics,2007,8(1):9-31.
  • 9ROUSSEEUW P J.Silhouettes:a graphical aid to the interpretation and validation of cluster analysis[J].Journal of Computational and Applied Mathematics,1987,20(1):53 -65.
  • 10DEMB(E)L(E) D,KASTNER P.Fuzzy C-means method for clustering microarray data[J].Bioinformatics,2003,19(8):973-980.

共引文献215

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部