期刊文献+

面向优先级用户的移动边缘计算任务调度策略 被引量:10

Task scheduling policy for mobile edge computing with user priority
下载PDF
导出
摘要 随着移动终端处理的数据量及计算规模不断增加,为降低任务处理时延、满足任务的优先级调度需求,结合任务优先级及时延约束,提出了基于任务优先级的改进min-min调度算法(task priority-based min-min,TPMM)。该算法根据任务的处理价值及任务的数据量计算任务的优先级,结合任务截止时间、服务器调度次数制定资源匹配方案,解决了边缘网络中服务器为不同优先级的用户进行计算资源分配的问题。仿真实验结果表明,该算法可以均衡服务器利用率,并有效降低计算处理的时延,提高服务器在任务截止处理时间内完成任务计算的成功率,相比min-min调度算法,TPMM算法最多可降低78.45%的时延,提高80%的计算成功率;相比maxmin调度算法,TPMM算法最多可降低80.15%的时延并提高59.7%的计算成功率;相比高优先级(high priority first,HPF)调度算法,TPMM算法最多降低59.49%的时延,提高57.7%的计算成功率。 With the increasing of data and the calculation scale in the mobile terminal,this paper proposed TPMM based on the min-min scheduling algorithms to reduce the task processing delay and meet the priority scheduling requirements of the task,it also combined the task priority and deadline constraints. The algorithm calculated the priority of the task according to the processing value and data volume,then formulated the resource matching scheme according to the task deadline and the number of server scheduling times,to solve the problem that the server in the edge network allocated resources for users with different priorities. Simulations show that the algorithm can balance the server utilization,effectively reduce the delay of the calculation process and improve the success rate of the server to complete the task calculation within the task deadline processing time. Comparing with the min-min scheduling algorithm,TPMM algorithm can reduce the delay by 78. 45% and increase the calculation success rate by 80%. Comparing with the max-min scheduling algorithm,TPMM algorithm can reduce the delay by 80. 15% and improve the calculation success rate by 59. 7%. Comparing with HPF scheduling algorithm,TPMM algorithm reduces the delay up to 59. 49% and increases the computational success rate by 57. 7%.
作者 董思岐 李海龙 屈毓锛 胡磊 Dong Siqi;Li Hailong;Qu Yuben;Hu Lei(Rocket Force University of Engineering,Xi’an 710025,China)
机构地区 火箭军工程大学
出处 《计算机应用研究》 CSCD 北大核心 2020年第9期2701-2705,共5页 Application Research of Computers
基金 国家自然基金青年基金资助项目。
关键词 边缘计算 优先级用户 任务调度策略 edge computing priority user task scheduling strategy
  • 相关文献

参考文献5

二级参考文献40

  • 1王树鹏,云晓春,余翔湛.基于生存性和Makespan的多目标网格任务调度算法研究[J].通信学报,2006,27(2):42-49. 被引量:16
  • 2李冬梅,施海虎.负载平衡调度问题的一般模型研究[J].计算机工程与应用,2007,43(8):121-125. 被引量:15
  • 3Armbrust M,Fox A,Griffith R.Above the Clouds:A BerkeleyView of Cloud Computing[R].Berkeley,USA:University ofCalifornia,Technical Report:UCB/EECS-2009-28,2009.
  • 4White T.Hadoop:The Definitive Guide[M].[S.1.]:YahooPress,2010.
  • 5Kennedy J,Eberhart R.Particle Swarm Optimization[C]//Proc.of IEEE International Conference on Neural Networks.Perth,Australia:IEEE Press,1995.
  • 6Kennedy J,Eberhart R.A Discrete Binary Version of theParticle Swarm Algorithm[C]//Proc.of IEEE ICSMC’97.[S.1.]:IEEE Press,1997:4104-4108.
  • 7Salman A,Ahmad I,Al-Madani S.Particle Swarm Optimi-zation for Task Assignment Problem[J].Microprocessors andMicrosystems,2002,26(8):363-371.
  • 8Clerc M.Discrete Particle Swarm Optimization:Illustrated bythe Traveling Salesman Problem[C]//Proc.of New Optimi-zation Techniques in Engineering Conference.Berlin,Germany:Springer,2004:219-239.
  • 9Joseph J, Fellenstein C. 网格计算[M] . 北京:清华大学出版社, 2005.
  • 10Bawa R K, Sharma G. Modified min-min heuristic for job scheduling based on QoS in grid environment[C] //Proc of Information Management in the Knowledge Economy International Conference. [S. l.] :IEEE Press, 2013:166-171.

共引文献34

同被引文献91

引证文献10

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部