期刊文献+

基于自适应扰动的疯狂蝴蝶算法 被引量:28

Crazy butterfly algorithm based on adaptive perturbation
下载PDF
导出
摘要 蝴蝶优化算法作为新提出的自然启发算法,其寻优方式模拟了蝴蝶利用嗅觉来确定花蜜或交配对象位置的行为。针对蝴蝶优化算法求解精度不高和收敛速度慢等问题,提出一种基于自适应扰动的疯狂蝴蝶算法(CIBOA)。首先,在自身认知飞行部分引入自适应惯性权重,平衡算法的局部与全局搜索能力;其次,在全局最优位置引入扰动策略,避免算法陷入局部最优;最后,在花蜜位置引入疯狂因子以增加种群多样性,获取更好的最优解。通过八个基准函数对五种算法搜索性能在10、30和50维的情况下进行对比分析,仿真实验结果表明改进算法的综合表现要优于其他算法。 Butterfly optimization algorithm is a newly natural heuristic algorithm,which simulates the butterfly’s behavior of using smell to determine the location of nectar or mating object.To solve the problem that the butterfly optimization algorithm was prone to low accuracy and slow convergence,this paper proposed the crazy butterfly optimization algorithm integrating with adaptive perturbation(CIBOA).Firstly,it introduced the adaptive inertial weights to the self-cognitive flight part to balance the local and global search capabilities of the algorithm.Secondly,it introduced the perturbation strategy to the global optimal position to avoid the algorithm falling into the local optimal.Finally,it introduced the crazy operator to the nectar location to increase the population diversity and obtain better optimal solution.To compare the search performance of five algorithms in 10,30 and 50 dimensions used eight benchmark functions.The experimental simulation results show that the comprehensive performance of the improved algorithm is better than other algorithms.
作者 王依柔 张达敏 徐航 宋婷婷 樊英 Wang Yirou;Zhang Damin;Xu Hang;Song Tingting;Fan Ying(College of Big Data&Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第11期3276-3280,共5页 Application Research of Computers
基金 贵州省自然科学基金资助项目(黔科合基础[2017]1047号)。
关键词 惯性权重 扰动策略 疯狂因子 蝴蝶优化算法 inertia weight perturbation strategy crazy operator butterfly optimization algorithm
  • 相关文献

参考文献6

二级参考文献60

  • 1单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:202
  • 2陈志平,袁晓玲,郤峰.多约束投资组合优化问题的实证研究[J].系统工程理论与实践,2005,25(2):10-17. 被引量:10
  • 3薛明志,左秀会,钟伟才,刘静.正交微粒群算法[J].系统仿真学报,2005,17(12):2908-2911. 被引量:13
  • 4MARKOWITZ H M. Portfolio selection[ J]. Journal of Finance, 1952,7(3) : 77-91.
  • 5CHANG T J, MEADE N,BEASLEY J E, et al. Heuristics for cardi- nality constrained portfolio optimisation [ J ]. Computers and Oper- ations Research ,2000,27( 13 ) : 1271 - 1302.
  • 6PROPATO M, UBER J G. Booster system design using mixedinteger quadratic programming [ J ]. Technical Notes, 2004,130 (4) : 348 - 352.
  • 7FERNANDEZ A, GOMEZ S. Portfolio selection using neural net- works [ J ]. Computer and Operations Research, 2007,34 ( 4 ) : 1177-1191.
  • 8CURA T. Particle swarm optimization approach to portfolio optimiza- tion [ J ]. Nonlinear Analysis: Real World Applications, 2009,10 (4) : 2396-2406.
  • 9KENNEDY J, EBERHART R C. Particle swarm optimization [ C ]// Pmc of IEEE International Conference on Neural Networks. Piscat- away Jersey: IEEE Service Center,1995 :1942-1948.
  • 10LAI Xin-sheng, ZHANG Ming-yi. An efficient ensemble of GA and PSO for real function optimization[ C]//Proc of the 2nd IEEE Inter- national Conference on Computer Science and Information Technolo- gy. New York: IEEE Press,2009 : 651-655.

共引文献262

同被引文献201

引证文献28

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部