期刊文献+

基于高速信号传输系统的新型CTLE均衡器 被引量:7

A New CTLE Based on High-Speed Signal Transmission System
下载PDF
导出
摘要 随着航空电子系统模块化、集成化的程度越来越高,采用ARINC818协议使新一代航空电子系统能够高速、实时地传输大容量数字视频信息,其对传输的信号质量要求更高。基于ARINC818协议的高速信号传输系统,设计了新型连续时间线性均衡器(CTLE)。在传统CTLE的基础上,将折叠式共源共栅型拓扑结构叠加在传统一级CTLE的输出端,形成二级结构,可以增加高频增益,达到信道补偿的目的。仿真结果显示在2.125 Gibit/s的速率下,二级均衡器结构有良好的补偿能力,均衡后的眼图水平张开度达到0.87UI。 With the increasing degree of modularization and integration of avionic systems,the ARINC 818 standard is used to make the new-generation avionic system transmit large-capacity digital video information at high speed in real time,which requires higher quality for the transmitted signal.A new Continuous Time Linear Equalizer(CTLE)is designed based on the ARINC 818 protocol for high-speed signal transmission systems.On the basis of the traditional CTLE,the folded cascode topology structure is imposed on the output of the conventional first-order CTLE to form a secondary structure,which can increase the high-frequency gain and achieve the purpose of channel compensation.The simulation results show that:at the rate of 2.125 Gibit/s,the two-level equalizer structure has good compensation ability,and the horizontal opening degree of equalized eye reaches 0.87UI.
作者 阎芳 张美琴 王鹏 刘金枝 YAN Fang;ZHANG Meiqin;WANG Peng;LIU Jinzhi(Civil Aviation University of China,Civil Aircraft Airworthiness and Repair Key Laboratory of Tianjin,Tianjin 300300,China;Civil Aviation University of China,Key Laboratory of Civil Aircaft Airworthiness Technology,Tianjin 300300,China;Civil Aviation University of China,College of Airworthiness,Tianjin 300300,China)
出处 《电光与控制》 CSCD 北大核心 2020年第10期109-112,共4页 Electronics Optics & Control
关键词 航空电子系统 ARINC818 CMOS 连续时间线性均衡器 折叠式共源共栅 avionic system ARINC 818 CMOS Continuous Time Linear Equalizer(CTLE) folded cascode topology
  • 相关文献

参考文献5

二级参考文献22

  • 1林强,熊华钢,张其善.光纤通道综述[J].计算机应用研究,2006,23(2):9-13. 被引量:38
  • 2杨慧贞,程永强,张博.基于FPGA的PAL-VGA转换器的实现[J].科技情报开发与经济,2007,17(4):224-225. 被引量:4
  • 3Kamrani E, Sawan M. Fully integrated CMOS avalanche photo- diode and distributed-gain TIA for CW-fNIRS. IEEE Biomedical Circuits and Systems Conference, San Francisco, CA, 2011:317.
  • 4Micusik D, Zimmermann H. A 240 MHz-BW 112 dB-DR TIA. IEEE International Solid-State Circuits Conference, San Fran- cisco, CA, 2007:554.
  • 5Huang Beiju, Zhang Xu, Chen Hongda. 1-Gb/s zero-pole can- cellation CMOS transimpedance amplifier for Gigabit Ethernet applications. Journal of Semiconductors, 2009, 30(10): 105005.
  • 6Tian Jun, Wang Zhigong, Liang Bangli, et al. A CMOS 1.4 THzf2 155 Mb/s differential transimpedance preamplifier for optical re- ceiver. Chinese Journal of Semiconductors, 2004, 25(11): 1486.
  • 7Xu Hui, Feng Jun, Liu Quan, et al. A 3.125-Gb/s inductorless transimpedance amplifier for optical communication in 0.35/m CMOS. Journal of Semiconductors, 2011, 32(10): 105003.
  • 8Aznar F, Celma S, Calvo B, et al. A 0.18 #m CMOS integrated transimpedance amplifier-equalizer for 2.5 Gb/s. 53rd IEEE In- ternational Midwest Symposium on Circuits and Systems, Seat- tle, WA, 2010, 40:604.
  • 9Micusik D, Zimmermann H. 130 dB-DR transimpedance ampli- fier with monotonic logarithmic compression and high-current monitor. IEEE International Solid-State Circuits Conference, San Francisco, CA, 2008:78.
  • 10Guermaz M B, Bouzerara L, Escid H, et al. Low-noise and high- bandwidth 0.8/zm CMOS transimpedance amplifier for optical receiver circuit. Journal of Circuits, Systems, and Computers, 2005, 14(2): 267.

共引文献33

同被引文献50

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部