期刊文献+

智能电力设备关键技术及运维探讨 被引量:39

Discussion on Key Technology and Operation&Maintenance of Intelligent Power Equipment
下载PDF
导出
摘要 当前电网对部分输电设备引入了基于代理的状态监测管理模式,但该模式存在单点故障安全隐患且严重依赖通信的高可靠性,分布广泛的配电设备也并不适用于此模式。即当前电力设备只执行功能不具备"智慧",无法实现状态智能感知,不符合能源互联网需求。为此,阐述了"智能电力设备"概念,并全面详述了其智慧功能,包括自我传感、自我告警、自我状态分析、健康状态评估以及自我保护。该设备管理模式基于电力设备对自身的智能感知、状态分析与健康管理,使其具备自主思维,成为可与外界智能交互的独立个体,实现对设备的高效全面感知,适应电网智能感知与灵活运维的要求。此外,研究了支撑该模式的关键技术,包括传感技术、故障预测算法、故障诊断算法、设备退化模型、健康评估方法、通信方式与传输协议。最后,讨论了智能电力设备的运维管理。 At present,the power grid introduces an agent based state monitoring management mode for some transmission equipment.However,this mode has a safety risk of single point failure and relies heavily on the high reliability of communication,which is not suitable for power distribution equipment widely distributed.That is,the power equipment currently still only performs functions without‘intelligence’,which cannot realize intelligent perception of state,and does not meet the requirements of Energy Internet.To this end,the concept of‘intelligent power equipment’is elaborated,and its intelligent functions are comprehensively detailed,including self-sensing,self-alarming,self-state analysis,assessment of state of health,and selfprotection.This equipment management mode is based on the intelligent perception,state analysis,and health management of the power equipment to operate autonomously and become an independent unit that can intelligently interact with the external environment.It realizes the efficient and comprehensive perception of power equipment,and adapts to the requirements of intelligent perception and flexible operation&maintenance of the power grid.In addition,the key technologies supporting this mode are studied,including sensing technologies,fault prediction algorithms,fault diagnosis algorithms,equipment degradation models,health assessment methods,communication methods and transmission protocols.Finally,the operation&maintenance management of the intelligent power equipment is discussed.
作者 赵仕策 赵洪山 寿佩瑶 ZHAO Shice;ZHAO Hongshan;SHOU Peiyao(School of Electrical and Electronic Engineering,North China Electric Power University,Baoding 071003,China)
出处 《电力系统自动化》 EI CSCD 北大核心 2020年第20期1-10,共10页 Automation of Electric Power Systems
基金 国家自然科学基金资助项目(51807063)。
关键词 智能电力设备 能源互联网 智能感知 自我状态分析 健康状态评估 intelligent power equipment Energy Internet intelligent perception self-state analysis assessment of state of health
  • 相关文献

参考文献16

二级参考文献354

共引文献1376

同被引文献649

引证文献39

二级引证文献451

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部