期刊文献+

面向模糊逻辑控制的移动群智感知多任务分配 被引量:4

Multi-task Allocation Based on Fuzzy Logic Controlin Mobile Crowd Sensing
下载PDF
导出
摘要 移动群智感知是一种新兴的感知范例,它采用参与者携带的移动设备感知实时信息.目前有关任务分配的大多数研究都缺乏计算实际参与者密度并对其进行详细分析的方法.在本文中,首先,基于参与者的出行时间和空间,采用模糊逻辑控制方法得到不同时空的参与者密度.另外,根据参与者密度,我们可以计算在特定时空下的任务所需要的有效样本数量.然后,本文通过考虑任务的属性和参与者方因素,可以获得所有任务的效用.最后,本文提出了一种全局贪婪算法来分配任务,以确保最大化所有任务的效用.仿真结果表明,在不同时空的任务数量、参与者数量以及参与者承载的最大工作负载的情况下,本文提出的全局贪婪算法在最大化所有任务的效用方面均优于其他基准算法. Mobile crow d sensingis an emerging sensing paradigm thatemploys mobile devices carried by participants to sense real-time information.M ost of the previous studies on task allocation in practical applications lack thew ay of calculating real participant density and detailed analyzing of it.In thisw ork,at first,a fuzzy logic control method is employed to obtain the participantdensity in different time and space based on participants’travel time and space.Further,according to the participant density,w e can calculate the effective quantity of samples a task required in a specific time and space.Then,the utility of alltasks can be obtained by considering both the attributes of tasks and the participant-side factors.At last,a global greedy algorithm is proposed to maximize the utility of all tasks.The simulation results show thatthe proposed global greedy algorithm is superior to other baselines in terms ofthe utility of all tasks w ith the quantity of tasks,the quantity of participants,and the maximum w orkload carried by the participants in different time and space.
作者 杨桂松 张杨林 何杏宇 YANG Gui-song;ZHANG Yang-lin;HE Xing-yu(School of Optic-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;College of Communication and Art Design,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第10期2068-2074,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61602305,61802257)资助 上海市自然科学基金项目(18ZR1426000,19ZR1477600)资助。
关键词 移动群智感知 参与者密度 模糊逻辑 全局贪婪 mobile crow d sensing participant density fuzzy logic globalgreedy algorithm
  • 相关文献

参考文献5

二级参考文献27

  • 1刘云浩.群智感知计算[J].中国计算机学会通讯,2012,8(10):38-41.
  • 2刘云浩.群智感知计算[OL]. [2013-08-10]. http://www.cse. ust. hk/.Iiu/Crowd2012. pdf.
  • 3Burke J A, Estrin D, Hansen M, et al. Participatory sensing[C] //Proceedings of Workshop on World Sensor Web: MobileDevice Centric Sensor Networks and Applications. NewYork: ACM Press, 2006 = 117-134.
  • 4Maisonneuve N,Stevens M, Niessen M E, et al. NoiseTube:measuring and mapping noise pollution with mobile phones[C] //Proceedings of the 4th International ICSC Symposium:Information Technologies in Environmental Engineering.Heidelberg: Springer, 2009 : 215-228.
  • 5Li Z,Zhu Y M,Zhu H Z,et al. Compressive sensingapproach to urban traffic sensing [C] //Proceedings of the 31stIEEE International Conference on Distributed ComputingSystems. Los Alamitos: IEEE Computer Society Press,2011: 889-898.
  • 6D,Hondt E,Stevens M, Jacobs A. Participatory noisemapping works! an evaluation of participatory sensing as analternative to standard techniques for environmentalmonitoring [J]. Pervasive and Mobile Computing, 2013,9(5): 681-694.
  • 7Candes E J, Romberg J, Tao T. Robust uncertaintyprinciples: exact signal reconstruction from highly incompletefrequency information [J]. IEEE Transactions on InformationTheory, 2006, 52(2): 489-509.
  • 8Donoho D L. Compressed sensing [J]. IEEE Transactions onInformation Theory, 2006,52(4): 1289-1306.
  • 9Yu X,Liu Y, Zhu Y, et al. Efficient sampling andcompressive sensing for urban monitoring vehicular sensornetworks [J]. IET Wireless Sensor Systems, 2012,2(3):214-221.
  • 10Rana R K,Chou C T, Kanhere S S, et al. Ear-phone: anend-to-end participatory urban noise mapping system [C] //Proceedings of the 9th ACM/IEEE International Conferenceon Information Processing in Sensor Networks. New York:ACM Press, 2010: 105-116.

共引文献61

同被引文献36

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部