期刊文献+

基于GaAs肖特基二极管的220GHz线阵列被动接收前端 被引量:1

220 GHz Linear Array Passive Receiver Front-End with GaAs Schottky Diodes
原文传递
导出
摘要 基于GaAs肖特基二极管,研制了1×4多像素220 GHz线阵列被动接收前端,接收前端的每个接收通道包含一个W波段三倍频器和一个220 GHz分谐波混频器。三倍频器使用两个以串联结构集成4个肖特基结的二极管芯片实现平衡式倍频模式;220 GHz分谐波混频器使用一对反向并联结构的GaAs肖特基二极管实现混频功能。室温下输入功率为100 mW,三倍频器在90~110 GHz频带范围内功率效率超过5%;当本振动率为4 mW时,谐波混频器在200~220 GHz频带内变频损耗小于9 dB。接收前端的单个通道通过上机测试,成像性能良好。该接收前端尺寸为40 mm×38 mm×26 mm,可广泛应用于各种毫米波成像检测系统。 Based on the GaAs Schottky diode, a 1×4 multi-pixel 220 GHz linear array passive receiver front-end was developed, each receiving channel of which contained a W-band tripler and a 220 GHz sub-harmonic mixer. The tripler used two GaAs Schottky diode chips in a balanced configuration, each chip integrated four Schottky junctions in a series configuration. The 220 GHz sub-harmonic mixer used an anti-parallel pair of GaAs Schottky diodes to realize the mixing function. The test results show that power efficiency of the tripler is more than 5% in the frequency range of 90-110 GHz for 100 mW input power at room temperature. In the frequency range of 200-220 GHz, the conversion loss of the mixer is less than 9 dB when the local oscillator power is 4 mW.Each single channel of the receiver front-end demonstrates high performance on imaging when it is used in a testing imaging system. The size of the receiver front-end is 40 mm×38 mm×26 mm, and it can be widely used in various millimeter-wave imaging detection systems.
作者 杨大宝 梁士雄 张立森 赵向阳 吕元杰 冯志红 蔡树军 Yang Dabao;Liang Shixiong;Zhang Lisen;Zhao Xiangyang;LüYuanjie;Feng Zhihong;Cai Shujun(The 13th Research Institute,CETC,Shijiazhuang 050051,China;Science and Technology on ASIC Laboratory,Shijiazhuang 050051,China)
出处 《半导体技术》 CAS 北大核心 2020年第10期748-753,共6页 Semiconductor Technology
基金 国家重点研发计划资助项目(2018YFF0109701)。
关键词 接收前端 GaAs肖特基二极管 分谐波混频器 三倍频器 成像 receiver front-end GaAs Schottky diode sub-harmonic mixer tripler imaging
  • 相关文献

参考文献6

二级参考文献40

  • 1申金娥,荣健,刘文鑫.太赫兹技术在通信方面的研究进展[J].红外与激光工程,2006,35(z3):342-347. 被引量:24
  • 2杨涛,向志军,吴伟,杨自强,钱可伟.W频段宽带倍频器(英文)[J].红外与毫米波学报,2007,26(3):161-163. 被引量:10
  • 3SIEGEL P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory Techniques, 2002, 50(3): 910-928.
  • 4HOSAKO I, SEKINE N. At the dawn of a new era in terahertz technology[J]. Proceedings of IEEE, 2007, 95(8): 1611-1623.
  • 5TONUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1: 97-105.
  • 6CARLSON E R, SCHNIDE R. Subharmonically pumped millimeter-wave mixers[J]. IEEE Transactions on Microwave Theory and Tech, 1978, 26(10): 706-715.
  • 7THOMAS B, MAESTRINI A, BEAUDIM G A low-noise fixed-tuned 300-360 GHz sub-harmonic mixer using planar Schottky diodes[J]. IEEE Mierow Wirel Compon Lett, 2005, 15(12): 865-867.
  • 8MARSH S, ALDERMAN B, MATHESON D, et al. Design of low-cost 183 GHz subharmonic mixers for commercial applicatlons[J], IET Circuit Devices Syst, 2007, 1 (1): 1-6.
  • 9MARVIN C. Harmonic mixing with an antiparailel diode pair[J]. IEEE Transactions on Microwave Theory and Tech, 1975, 23(8): 667-673.
  • 10RAISANEN A V, CHOUDHURY D, DENGLER R J, et al. A novel split-waveguide mount design for millimeter- and submillimeter-wave frequency multipliers and harmonic mixers[J]. IEEE Microw Guided Wave Lett, 1993, 3(10): 369-371.

共引文献30

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部