期刊文献+

GF-3交叉极化数据的海面风速反演研究 被引量:1

Research on Inversion of Sea Surface Wind Speed fromGF-3 Cross Polarization Data
下载PDF
导出
摘要 单极化合成孔径雷达(SAR)图像在海面风场反演应用中具有复杂的业务化模型,运用SAR交叉极化数据反演海面风速成为当前研究热点。采用我国自主发射的C波段SAR卫星高分三号全极化SAR图像数据,以太平洋、大西洋等远洋海域为重点研究区域,分析交叉极化后向散射强度与海面风速、相对风向及雷达入射角的关系,建立多元线性回归模型和BP神经网络模型,并采用ECMWF风场再分析数据对模型结果进行验证。实验结果表明,建立的回归模型有效验证了交叉极化后向散射强度与风速、入射角呈线性相关,相较于同极化SAR反演海面风场,该模型不依赖于外部风向的输入,简化了风速反演模型。BP神经网络模型训练样本集拟合R值优于70%,且有效预测了交叉极化风速。 The inversion of the ocean surface wind field with single-polarized Synthetic Aperture Radar(SAR)data has a complex operational model.The use of cross polarization SAR images to invert the ocean surface wind has become a hot topic in research.Taking the waters of the Pacific and the Atlantic as the research objects,this paper uses the polarized SAR image data from the GF-3 satellite,which is the C-band SAR satellite launched independently by China,to analyze the relationship between cross polarization backscattering intensity and ocean surface wind speed,relative wind direction and radar incident angle.A multiple linear regression model and a BP neural network model are established,and their results are verified by using wind field reanalysis data of ECMWF.Experimental results show that the established regression model demonstrates the linear correlation between the cross polarization backscattering intensity and the wind speed and incident angle.Compared with the inversion of sea surface wind field based on co-polarization SAR,this inversion process does not depend on the input of the external wind direction,and simplifies the wind speed inversion model.The R value in the fit of training sample set of the BP neural network model exceeds 70%,which means the model effectively predicts the cross polarization wind speed.
作者 丁苑 郝明磊 行鸿彦 曾祥能 DING Yuan;HAO Minglei;XING Hongyan;ZENG Xiangneng(Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster,Nanjing 210044,China;Jiangsu Provincial Key Laboratory of Meteorological Detection and Information Processing,Nanjing University of Information Science&Technology,Nanjing 210044,China;Research Institute of Battlefield Environment,Air Force Research Institute,Beijing 100085,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第11期286-292,300,共8页 Computer Engineering
基金 国家自然科学基金(61671248) 国家重点研发计划(2018YFC1506102) 江苏省重点研发计划(BE2018719) 中国博士后科学基金(2016M602964)。
关键词 合成孔径雷达图像 交叉极化 海面风速 逐步回归 BP神经网络 Synthetic Aperture Radar(SAR)image cross polarization sea surface wind speed stepwise regression BP neural network
  • 相关文献

参考文献9

二级参考文献71

共引文献82

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部