期刊文献+

自适应步长移动窗PCA的辊道窑异常检测方法 被引量:1

Anomaly Detection Method on Roller Kiln Based on Adaptive Step-size Moving Window PCA
下载PDF
导出
摘要 针对辊道窑进行异常检测时存在的检出率低、误报、发现滞后等问题,引入移动窗主元分析算法,并提出一种自适应步长移动窗主元分析算法。在该算法中,利用主元分析法中的T2统计量为依据,以积累多个新样本进行数据块更新的方式代替移动窗主元分析逐个新样本更新模型的方式,有效提升了算法性能。通过实验证明,该算法具有较好的准确性和较高的性能,能有效运用于辊道窑的异常检测。 Aiming at the problems of inaccuracy,false alarms and lag detection in the abnormal detection of roller kiln,the moving window principal component analysis algorithm was introduced,and an adaptive step size moving window principal component analysis algorithm was proposed.In this algorithm,the T2 statistic in the principal component analysis method was used as the basis,and the method of accumulating multiple new samples to update the data block was used instead of the moving window principal component analysis to update the model one by one,which effectively improved the performance of the algorithm.The experiment proves that the algorithm has better accuracy and higher performance,and can be effectively used in abnormal detection of roller kiln.
作者 邹振弘 印四华 Zou Zhenhong;Yin Sihua(School of Computers,Guangdong University of Technology,Guangzhou 510006,China;School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出处 《机电工程技术》 2020年第10期110-114,共5页 Mechanical & Electrical Engineering Technology
基金 国家自然科学基金项目(编号:U1501248)。
关键词 辊道窑 异常检测 自适应步长 移动窗 主元分析法 roller kiln anomaly detection adaptive step moving window PCA
  • 相关文献

参考文献5

二级参考文献20

共引文献26

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部