期刊文献+

给定悬挂点的非平衡符号图的最小拉普拉斯特征值

THE LEAST LAPLACIAN EIGENVALUE OF UNBALANCED SIGNED GRAPHS OF FIXED ORDER AND GIVEN NUMBER OF PENDANT VERTICES
下载PDF
导出
摘要 符号图是边赋值为±1的一类图.设符号图Γ的拉普拉斯矩阵为L(Γ)=D(G)-A(Γ),这里D(G)表示度矩阵, A(Γ)表示符号图的邻接矩阵.Γ是平衡的当且仅当最小拉普拉斯特征值λn=0.因此当Γ非平衡时λn>0.本文研究了非平衡符号图的最小拉普拉斯特征值问题.利用图特征值的嫁接方法,获得了给定悬挂点非平衡符号图的最小拉普拉斯特征值,并且刻画了达到最小特征值的极图. Signed graphs are graphs whose edges get signs ±1 and, as for unsigned graphs,they can be studied by means of graph matrices. For a signed graph Γ we consider the Laplacian matrix defined as L(Γ) = D(G)-A(Γ), where D(G) is the matrix of vertex degrees of G and A(Γ)is the signed adjacency matrix. It is well known that a connected graph Γ is balanced if and only if the least Laplacian eigenvalues λn=0. Therefore, if a connected graph Γ is not balanced, then λn> 0. In this paper, we investigate how the least eigenvalue of the Laplacian of a signed graph changes by relocating a tree branch from one vertex to another. As an application, we determine the graph whose least laplacian eigenvalue attains the minimum among all connected unbalanced signed graphs of fixed order and given number of pendant vertices.
作者 汪赛 王登银 田凤雷 WANG Sai;WONG Dein;TIAN Feng-lei(Xuhai College,China University of Mining and Technology,Xuzhou 221116,China;School of Mathematics,China University of Mining and Technology,Xuzhou 221116,China;School of Management,Qufu Normal University,Rizhao 276826,China)
出处 《数学杂志》 2020年第6期643-652,共10页 Journal of Mathematics
基金 Supported by the National Natural Science Foundation of China(11971474) Natural Science Foundation of Shandong Province(ZR2019BA016).
关键词 符号图 拉普拉斯 最小特征值 signed graph Laplacian least eigenvalue
  • 相关文献

参考文献1

二级参考文献11

  • 1Chaiken, S.: A combinatorial proof of the all minors matrix tree theorem. SIAM J. Algebraic Discrete Methods, 3(2), 319-329 (1982).
  • 2Cameron, P. J., Seidel, J., Tsaranov, J. J.: Signed graphs, root lattices, and Coxeter groups. J. of Algebra,164(1), 173-209 (1994).
  • 3Hou, Y. P., Li, J. S.: On the Laplacian eigenvalues of signed graphs. Linear and Mutilinear Algebra, 51(1),21-30 (2003).
  • 4Desai, B., Rao, V.: A characterization of the smallest eigenvalue of a graph. J. of Graph Theory, 18(2),181-194 (1994).
  • 5Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J., 23(1), 298-305 (1973).
  • 6Merris, R.: Laplacian Matrices of Graphs: A Survey. Linear Algebra and its Applications, 197/198(1),143-176 (1994).
  • 7Mohar, B.: Some applications of Laplacian eigenvalues of graphs, Graph Symmetry (G. Hahn and G. Sabidussi, eds.), Kluwer Academic Publishers, Boston, 225-275, 1997.
  • 8Chung, F. R.: Spectral Graph Theory, CBMS Lecture Notes, AMS Publication, 1997.
  • 9Harary, F.: On the notion of balanced in a signed graph. Michigan Math. J., 2(1), 143-146 (1953).
  • 10Deradass, B., Archarya, L.: Spectral criterion for cycle balance in networks. J. of Graph Theory, 4(1), 1-11(1980).

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部