期刊文献+

CO2混合工质动力循环系统的动态特性对比 被引量:4

Comparison of Dynamic Performance of CO2 Mixture Transcritical Power Cycle Systems
原文传递
导出
摘要 利用余热回收技术回收重载柴油机缸套水及排气余热是提高能源利用率的有效手段之一。搭建了三种形式的CO2混合工质动力循环系统,并用实验数据进行标定及验证。并针对内燃机多变工况的特点,对比了三种不同系统在不同外部条件阶跃下的动态响应特性。结果表明,预回热系统能显著提高系统的输出功。随着系统部件的增多,系统响应速度逐渐变缓。研究结果为CO2混合工质动力循环系统的实际运行提供理论指导。 It is one of the effective ways to improve energy efficiency to recover the energy of jacket water and exhaust waste heat of heavy-duty diesel engine by using waste heat recovery technology.Three types of CO2 mixture transcritical power cycle system is established and validated against experimental data.The dynamic performance of three kinds of system under different external step conditions is compared according to the characteristics of the varied working conditions of the internal combustion engine.The results indicated that,the Preheating-Regenerating system(PR-System)can significantly improve the system power output.The dynamic response speed of the system slows down with the increase the system components.The results provide theoretical guidance for the practical operation of CO2 mixture transcritical power cycle system.
作者 王瑞 王轩 蔡金文 王明涛 田华 舒歌群 WANG Rui;WANG Xuan;CAI Jin-Wen;WANG Ming-Tao;TIAN Hua;SHU Ge-Qun(State Key Laboratory of Engines,Tianjin University,Tianjin 300350,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2020年第11期2651-2657,共7页 Journal of Engineering Thermophysics
基金 国家自然科学基金重点项目(No.51636005)。
关键词 余热回收 CO2混合工质动力循环 动态特性 响应速度 waste heat recovery CO2 mixture transcritical power cycle dynamic performance response speed
  • 相关文献

参考文献2

二级参考文献25

  • 1Bari S, Hossain S N. Waste heat recovery from a diesel engine usingshell and tube heat exchanger [J]. Applied Thermal Engineering, 2013 61(2): 355-363.
  • 2Yun K T, Cho H, Luck R, Mago P J. Modeling of reciprocating internal combustion engines for power generation and heat recovery [J]. Applied Energy, 2013, 102:327-335.
  • 3El-Emam R S, Dincer I. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle [J]. Applied Thermal Engineering, 2013, 59(1/2): 435 -444.
  • 4Zhang J H, Feng J C, Zhou Y L, Fang F, Yue H. Linear active disturbance rejection control of waste heat recovery systems with organic Rankine cycles [J]. Energies, 2012, 5:5111-5125.
  • 5Wang J F, Yan Z Q, Zhao P, Dai Y P. Off-design performance analysis of a solar-powered organic Rankine cycle [J]. Energy Conversion and Management, 2014, 80:150-157.
  • 6Carcasci C, Ferraro R, Miliotti E. Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines [J]. Energy, 2014, 65(1): 91-100.
  • 7Maria F D, Micale C, Sordi A. Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC [J]. Renewable Energy, 2014, 66:461-467.
  • 8Maraver D, Quoilin S, Royo J. Optimization of biomass-fuelled combined cooling, heating and power (CCHP) systems integrated with subcritical or transcritical organic Rankine cycles (ORCs) [J]. Entropy, 2014, 16:2433-2453.
  • 9Yang M H, Yeh R H. Analysis of optimization in an OTEC plant using organic Rankine cycle [J]. Renewable Energy, 2014, 68: 25-34.
  • 10Xie H, Yang C. Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle [J].Applied Energy, 2013, 112:130-141.

共引文献25

同被引文献26

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部