摘要
随着深度学习在医学影像分割、药品检测等医学领域的广泛应用,语义分割技术承载了举足轻重的地位。语义分割融合了目标检测和图像识别两大技术,旨在将图像分割成多组具有特定语义的区域,属于像素级别的密集分类问题。然而为了推动移动视觉识别技术的有效发展,传统深度学习模型在功耗、内存管理、实时性等方面都无法满足移动设备的要求。边缘计算是一种有效将计算、网络、存储、带宽等能力从主机端延伸到移动边缘端的新型架构模式,从而实现在有限计算资源环境下的模型推理运行。因此,文中尝试在基于边缘TPU协处理器的开发板上完成FCN,SegNet,U-Net等经典图像语义分割模型的转换、部署及推理运行,并在采集的真实药品数据集上验证提出的语义分割模型的正确性及性能。
With the extensive application of deep learning in medical imaging segmentation,drug detection and other medical fields,semantic segmentation technology plays a pivotal role.Semantic segmentation combines two techniques of target detection and image recognition.It aims to segment the image into multiple groups of regions with specific semantics,which is a dense classification problem at the pixel level.However,in order to promote the effective development of mobile visual recognition technology,the traditional deep learning model cannot meet the requirements of mobile devices in terms of power consumption,memory management,and real-time performance.Edge computing is a new architecture mode that effectively extends the computing,network,storage,and bandwidth capabilities from the host to the mobile edge to implement model inference operations in a limited computing resource environment.Therefore,this paper attempts to complete the transformation,deployment and inference operation of the classic image semantic segmentation model,such as FCN,SegNet,U-Net,etc,on the development board based on the edge TPU coprocessor,and verifies the correctness and performance of the proposed semantic segmentation model on the collec-ted real drug dataset.
作者
王赛男
郑雄风
WANG Sai-nan;ZHENG Xiong-feng(Nanjing Engineering Vocational College,Jiangsu Union Technical Institute,Nanjing 211135,China;School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处
《计算机科学》
CSCD
北大核心
2020年第S02期276-280,共5页
Computer Science