期刊文献+

数学课程知识图谱构建及其推理 被引量:18

Construction of Mathematics Course Knowledge Graph and Its Reasoning
下载PDF
导出
摘要 课程知识图谱构建已成为知识图谱、网络学习和知识服务等领域的重要研究内容。以数学类课程为研究对象,构建了数学课程本体,设计了基于数学课程本体的数学课程知识图谱构建方法,提出了基于数学课程知识图谱的知识推理方法。数学课程本体的特点是:数学课程本体包括数学课程上层本体、数学课程内容本体以及数学课程习题本体。数学课程上层本体描述不同数学课程共享的概念化知识,数学课程内容本体描述特定课程的知识,数学课程习题本体描述数学课程习题的内涵和性质。数学课程知识图谱的特点是:基本模型和扩展模型的分层融合性,概念的正实例和负实例的引入,以及与数学课程内容本体的有机衔接。基于数学课程知识图谱的知识推理方法的特色是:构建了推理类型分类体系,该分类体系从本体角度给出了推理知识的类型和在数学课程知识图谱中的定位和关联关系。离散数学课程实验,表明了知识图谱构建和推理方法的有效性。数学课程知识图谱及其推理为用户提供了一种形式化的、显式的课程知识表示、知识组织和知识推理模型,从而改善了知识服务效果。 The construction of course knowledge graph has become an important research content in the fields of knowledge graph,E-learning and knowledge service and so on.This paper takes mathematics courses as the research object,constructs mathe-matics course ontology(MCO),designs a method of building mathematics course knowledge graph(MCKG)in terms of mathematics course ontology,and proposes an approach of knowledge reasoning founded on MCKG.The characteristics of MCO are that it includes mathematics course top-level ontology,mathematics course content ontology,and mathematics course exercise ontology.Mathematics course top-level ontology is to depict shared conceptualizing knowledge of different mathematics courses.Mathematics course content ontology is to describe knowledge of specific courses,while mathematics course exercise ontology is to depict intensions and properties of exercises of mathematics courses.The traits of MCKG are that hierarchical fusion of basic model and extended model,introduction of positive instances and negative instances of concepts,and organic integration with mathematics course content ontology.The characteristic of knowledge inference based on MCKG is that the taxonomy of infe-rence types is built.This taxonomy gives types of inference knowledge,and location and associated relationships in MCKG from the point view of ontology.The experiments about the discrete mathematics course show the validity of the proposed knowledge graph construction and reasoning methods.The mathematics course knowledge graph and its reasoning provide a formal explicit model of course knowledge representation,organization,and reasoning for users,and can improve knowledge service effects.
作者 张春霞 彭成 罗妹秋 牛振东 ZHANG Chun-xia;PENG Cheng;LUO Mei-qiu;NIU Zhen-dong(School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,China)
出处 《计算机科学》 CSCD 北大核心 2020年第S02期573-578,共6页 Computer Science
基金 北京理工大学科技创新计划(GZ2019075102) 北京理工大学教育教学改革项目(068)。
关键词 数学课程知识图谱 知识推理 数学课程上层本体 数学课程内容本体 Knowledge graph of mathematics course Knowledge reasoning Mathematics course top-level ontology Mathematics course content ontology
  • 相关文献

参考文献14

二级参考文献120

  • 1李毅强,杨贯中.基于学习对象的课程构建[J].科学技术与工程,2005,5(22):1733-1737. 被引量:4
  • 2张昕,李晓光,王大玲,于戈.数据流中一种快速启发式频繁模式挖掘方法[J].软件学报,2005,16(12):2099-2105. 被引量:14
  • 3潘云鹤,王金龙,徐从富.数据流频繁模式挖掘研究进展[J].自动化学报,2006,32(4):594-602. 被引量:34
  • 4邓家先.信息论与编码课程教学改革探讨[J].电气电子教学学报,2007,29(2):111-114. 被引量:47
  • 5曹存根 等.NKI移动人-知界面:中国科学院计算技术研究所技术报告[R].北京,2003..
  • 6唐素琴.[D].中科院计算所,北京,2002.
  • 7Moreale E,Vargas-Vera M.Semantic services in e-Learning:An argumentation case study [J]. Educational Technology and Society,2004,7(4): 112-128.
  • 8Boyce S,Pahl C.Developing domain Ontologies for course content [J]. Educational Technology and Society, 2007,10 (3): 275-288.
  • 9Aroyo L,Dicheva D;Cristea A.Ontological Support for web courseware authoring[C].Proceedings of Intelligent Tutoring Systems. Berlin:Springer,2002:270-280.
  • 10Dean M, Schreiber G. OWL web ontology language reference [EB/OL]. http://www.w3.org/TR/owl2ref,2004-02-10.

共引文献1315

同被引文献216

引证文献18

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部