期刊文献+

基于“21世纪海上丝绸之路”AIS数据的船舶交通流预测 被引量:3

Vessel Traffic Flow Forecast Based on AIS Data of"21st Century Maritime Silk Road"
下载PDF
导出
摘要 为探究“21世纪海上丝绸之路”船舶交通流规律,基于2018年“21世纪海上丝绸之路”AIS(Automatic Identification System,船舶自动识别系统)数据,利用时间序列模型分别对货船、油轮和货船-油轮这3种情形下的船舶交通流进行了研究。结果显示,船舶交通流变化规律可以用ARIMA模型(Auto-regressive Intergrated Moving Average Model,即差分自回归移动平均模型),拟合并预测;货船、油轮和货船-油轮这3种情形有相同的最优选择模型ARIMA(1,1,2)。“21世纪海_上丝绸之路”船舶交通流可由前两个时间周期内的交通流数据拟合预测,并且ARIMA(1,1,2)模型对单一船型交通流的预测效果优于对混合船型交通流的预测。 This paper aims to explore the law of vessel traffic flow on the“21st Century Maritime Silk Road”.Based on the Automatic Identification System data of the“21st Century Maritime Silk Road”in 2018,the time series model is used to analyze the vessel traffic flow of three situations of cargo ships,tankers and cargo shipstankers.The research shows that:(1)The changes in vessel traffic flow can be fitted and predicted by using the differential autoregressive moving average model(ARIMA).(2)Three situations have the same optimal selection model ARIMA(1,1,2).The results show that the current vessel traffic flow of“21st Century Maritime Silk Road”can be predicted by the traffic flow in the last two time periods.Three situations all have relatively accurate prediction results,and the prediction effect of the ARIMA(1,1,2)model on the single ship traffic flow is better than that of the mixed ship traffic flow.
作者 李振福 段伟 李肇坤 邓昭 Li Zhen-fu;Duan Wei;Li Zhao-kun;Deng Zhao(School of Transportation Engineering,Dalian Maritime University,Dalian 116026,China;Shipping Development Research Institute,Dalian Maritime University,Dalian 116026,China)
出处 《广东工业大学学报》 CAS 2020年第6期1-8,共8页 Journal of Guangdong University of Technology
基金 国家重点研发计划项目(2017YFC1405600) 大连海事大学重点科研培育项目(3132019307)。
关键词 AIS数据 时间序列模型 船舶交通流 AIS(Automatic Identification System)data time series model vessel traffic flow
  • 相关文献

参考文献29

二级参考文献251

共引文献240

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部