摘要
为了研究钛合金板在中低速破片模拟弹(FSP)侵彻下的抗弹性能及破坏机理,开展了一系列弹道试验,对比分析了921A钢和钛合金的抗弹性能,得到了钛合金靶板的破坏模式,并且利用有限元分析软件Ansys/LS-DYNA探讨了不同厚度下钛合金靶板的能量吸收规律。研究结果表明:FSP侵彻下,钛合金靶板背弹面产生脆性断裂并在撞击区域形成裂纹,靶板贯穿后,背弹面扩孔呈现碎块崩落现象;FSP中低速侵彻下,钛合金靶板单位面密度吸能较921A钢靶板大;靶厚较小时,随着FSP初速的增加,靶板破坏模式存在高耗能到低耗能的转变,此刻靶板单位面密度吸能达到峰值;靶板能量吸收率随弹体冲击能的增大,先急剧减小后缓慢减小,在一定的弹体冲击能下,靶板能量吸收率随靶板厚度的增大而增大。
In order to investigate the anti-penetration performance and failure modes of titanium alloy target under low-medium velocity FSP impact,a series of ballistic experiments was carried out,the ballistic performance of titanium alloy and 921A steel was compared and analyzed,the failure modes of titanium alloy were obtained,and the energy absorption law of titanium alloy target with different thickness was investigated by using finite element analysis software Ansys/LS-DYNA.The results are as follows:Under FSP penetration,brittle fracture occurs on the rear plane and cracks are formed in the impact area;and after target penetrates,the hole enlargement on the rear plane presents debris collapse phenomenon.Under medium and low velocity FSP penetration,the energy absorption per unit surface density of titanium alloy target is larger than that of 921A steel target.When the target thickness is small,with the increase of the initial velocity of FSP,the damage mode of the target changes from high energy consumption to low energy consumption,and at this moment,the energy absorption per unit surface density of the target reaches its peak value.With the increase of the impact energy,the energy absorption rate of the target decreases sharply at first and then slowly.Under a certain impact energy,the energy absorption rate of the target increases with the increase of the thickness of the target.
作者
张元豪
程忠庆
侯海量
刘靖晗
李凌峰
ZHANG Yuan-hao;CHENG Zhong-qing;HOU Hai-liang;LIU Jing-han;LI Ling-feng(College of Naval Architecture & Ocean Engineering, Naval Univ. of Engineering, Wuhan 430033, China;Dept. of Coastal Defense Engineering,Naval College of Service, Tianjin 300450, China)
出处
《海军工程大学学报》
CAS
北大核心
2020年第5期11-15,20,共6页
Journal of Naval University of Engineering
基金
国家自然科学基金资助项目(51679246)
国家安全重大基础研究项目(6133050102)。
关键词
FSP冲击
钛合金
抗弹性能
破坏模式
能量吸收率
FSP impact
titanium alloy
ballistic performance
failure mode
energy absorption