期刊文献+

基于定位置信度和区域全卷积网络的火焰检测方法 被引量:3

Fire Detection Method Based on Localization Confidence and Region-Based Fully Convolutional Network
原文传递
导出
摘要 针对火焰检测定位精度与检测精度不高的问题,提出了基于定位置信度和区域全卷积网络的火焰检测方法。首先使用扩大的可分离卷积提高感受野,减少模型参数量,提高检测速度;其次对预测候选框进行平移和伸缩操作,以提高候选区域的完整性;然后对非极大值抑制方法采用分类置信度作为排序标准,而导致的错误抑制问题,引入定位置信度,以提高候选框的定位精度及检测精度;最后加入新的标签,分别代表特征不明显的弱火焰与特征明显的强火焰,对弱火焰样本加强学习,使得弱火焰能与亮色背景更好区分,从而降低样本漏检率。实验结果表明,本文方法在Bilkent大学公开火焰数据集以及互联网搜集的测试数据上,检测的火焰区域更完整,火焰位置更精确,火焰检测率更高。 Aiming at the problem of low location accuracy and detection accuracy of fire detection,a fire detection method based on localization confidence and region-based fully convolutional network is proposed.First,expanded separable convolutions are used to improve the receptive field,reduce the amount of model parameters,and improve the detection speed.Second,the prediction candidate frame is translated and stretched to improve the integrity of the candidate region.Then,for non-maximum suppression method,the classification confidence degree is used as a sorting standard,which leads to the error suppression problem,so as to improve the location accuracy and detection accuracy of the candidate frame.Finally,new tags are added,they represent the weak fire with no obvious characteristics and the strong fire with obvious characteristics,respectively.The weak fire samples are strengthened to distinguish the weak fire from the bright background,so as to reduce the sample missing rate.Experimental results show that the proposed method,based on the public fire data set of Bilkent University and the test data collected from the internet,can make the fire area detected to be more complete.The fire position is more accurate,and the fire detection rate is higher.
作者 张鸿 严云洋 刘以安 高尚兵 Zhang Hong;Yan Yunyang;Liu Yian;Gao Shangbing(School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China;Faculty of Computer&Software Engineering,Huaiyin Institute of Technology,Huaian,Jiangsu 223003,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第20期196-205,共10页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61402192) 江苏省“六大人才高峰”项目(2013DZXX-023) 江苏省高校自然科学基金重大项目(18KJA52001) 江苏省“青蓝工程” 淮安市“533英才工程” 淮安市自然科学课题(HAB201803)。
关键词 图像处理 火焰检测 区域全卷积网络 可分离卷积 定位置信度 非极大值抑制 image processing fire detection region-based fully convolutional network separable convolutions localization confidence non-maximum suppression
  • 相关文献

参考文献5

二级参考文献29

共引文献76

同被引文献21

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部