摘要
基于漏磁检测技术基本原理,采用有限元方法,应用COMSOL软件对管道环焊缝及焊缝处常见缺陷磁化后产生的漏磁场进行了仿真模拟,得到描述磁场分布特征的磁通密度径向和轴向分量分布曲线。通过改变焊缝余高以及焊缝处凹坑、错边和咬边的几何参数,得到了不同缺陷类型在不同尺寸下的磁场分布。结果表明:管道环焊缝磁场分布呈增厚特征,且随着焊缝余高的增加,磁通密度径向和轴向分量值均明显增大;焊缝与其中心缺陷呈两者复合的磁场分布特征。焊缝中心凹坑磁场分布呈减薄特征,且磁通密度轴向和径向分量峰的峰宽均随凹坑直径的增加近线性增大;随着错边量的增加,缺陷处磁通密度分布曲线的峰值均明显增大;随着咬边深度的增加,咬边位置的磁通密度减小。
The characteristics of magnetic field generated after the magnetization of pipeline girth weld defects were numerically simulated with finite element method based on magnetic flux leakage(MFL)principle in this paper.The magnetic flux density distribution curves were obtained in order to describe the features of leak magnetic field using COMSOL software.By changing the geometric parameters of weld reinfor-cement,pit,stagger and undercut,the magnetic field distribution of different defect types in different sizes is obtained.The results show that the magnetic field distribution of pipeline girth weld is thickened,and the radial and axial component values of magnetic flux density increase obviously with the increase of weld reinforcement.the weld and its central defect show the combined magnetic field distribution characteristics of both.The magnetic field distribution in the center of the weld is thinning,and the peak width of the axial and radial components of the magnetic flux density increases linearly with the increase of the pit diameter.With the increase of misalignment,the peak value of the flux density distribution curve at the defect increases obviously;with the increase of undercut depth,the flux density at the undercut position decreases.
作者
毛瑞麒
马梦想
饶连涛
许志军
苏林
储玲玉
徐杰
MAO Ruiqi;MA Mengxiang;RAO Liantao;XU Zhijun;SU Lin;CHU Lingyu;XU Jie(China University of Mining and Technology,Xuzhou 221116,China;SINOPEC Oil&Gas Pipeline Inspection Co.,Ltd.,Xuzhou 221008,China)
出处
《电焊机》
2020年第11期28-36,I0004,共10页
Electric Welding Machine
基金
国家自然科学基金(51301197)
江苏省自然科学基金(BK20130182)
大学生创新训练项目(202010290125Y)
中国石油化工股份有限公司资助项目(318019-2)。
关键词
管道环焊缝
径向励磁
焊缝缺陷
磁通密度
有限元模拟
pipe girth weld
radial excitation
weld defect
magnetic flux density
finite element simulation