期刊文献+

基于假设检验的雷达近邻目标距离统计分辨限——幅度随机分布 被引量:1

Hypothesis Testing Based Range Statistical Resolution Limit of Radar-Random-distributed Amplitude
下载PDF
导出
摘要 基于假设检验的统计分辨研究能够衡量统计意义下的分辨能力,还能够突破瑞利限的限制。当前研究均假定两目标的回波幅度为确定情况,实际中雷达观察的快起伏目标回波服从随机分布。基于随机分布假设,本文推导了两近邻点目标的距离统计分辨性能。研究表明,两种假设下的检验统计量均服从加权卡方分布,统计分辨概率和波形、幅度相关系数、回波信噪比等多种因素有关。仿真验证了理论推导的正确性,并且与应用于时延分辨的MUSIC算法相比,该方法具有更好的距离超分辨性能。 The research of Statistical Resolution Limit(SRL)based on hypothesis testing can measure the resolution ability in the statistical point and break through the Rayleigh limit.However,the researches presented have made an assumption that the amplitudes of two signals are determined,while in the reality that of the fast-fluctuating targets are random-distributed.Therefore,we derive the range statistical resolution limit of the two adjacent targets under this assumption.The studies show that both tests under two hypotheses are weighted Chi-Square distributed,and the statistical resolution performance is related to factors,such as the waveforms,the coefficients of the amplitudes and the signal-noise ratio(SNR),etc..The simulation results demonstrate the correctness of the theoretical results,and this method accesses a much better performance compared with the MUSIC algorithm applied in the range resolution.
作者 张云雷 卢建斌 田树森 李厚朴 Zhang Yunlei;Lu Jianbin;Tian Shusen;Li Houpu(Institute of Electronic Engineering,Navy University of Engineering,Wuhan,Hubei 430033,China;Department of Navigation Engineering,Navy University of Engineering,Wuhan,Hubei 430033,China)
出处 《信号处理》 CSCD 北大核心 2020年第10期1735-1743,共9页 Journal of Signal Processing
基金 国家自然科学基金(61501486,41771487) 湖北省杰出青年科学基金(2019CFA086)。
关键词 假设检验 距离超分辨 统计分辨 最小均方误差估计 随机分布 hypothesis testing range super resolution statistic resolution limit minimized mean square estimator random-distributed
  • 相关文献

参考文献3

二级参考文献13

  • 1万瑾,宋志杰.基于滑动平均的等间隔线阵逆波束形成[J].声学技术,2007,26(3):483-487. 被引量:6
  • 2Nutt all A H, Wilson J H. Estimation of the acoustic fieldthe Fourier series method and the Fourier integral method[J]. J. A. S. A.,1991,90:2004-2019.
  • 3Wilson J H. Applications of inverse beam-forming theory[J]. J. A. S. A. ,1995,98: 3250-3261.
  • 4Fabre J P, Wilson J H. Minimum of detectable level e-valuation of inverse beamforming using Outpost SUNRISEdata[J]. J. A. S. A. ,1995,98: 3262-3278.
  • 5Wilson J H,Veenhuis R S. Shallow water beamformingwith small aperture, horizontal, towed arrays [ J] . J. A.S. A. 1997(1) : 384-394.
  • 6Sasha Draganov, John Weinfield, Lin Haas. INVERSEBEAMFORMING FOR NAVIGATING IN MULTIPATHENVIRONMENTS[J]. ICASSP, 2008: 5316-5319.
  • 7Fishier E, PoorH V. Estimation of the number of sourcesin unbalanced arrays via information theoretic criteria[J]. IEEE Trans Signal Processing,2005,53 ( 9 ):3543-3553.
  • 8Jing min X,Nan ning Z, Sano A. Simple and efficient onparametric method for estimating the number of signalswithout eigende composition[ J]. IEEE Trans Signal Pro-cessing, 2007,55(4) :1405-1420.
  • 9Bucker H P. High-resolution cross-sensor beamformingfor a uniform line array[ J]. Acoustic Soc Am, 1978,63(2) : 420-424.
  • 10Kay SM,Marple S L. Sources of and remedies for spectralline splitting in autoregressive spectrum analysis[C] //1979IEEE International Conference on Acoustics, Speech, andSignal Processing, Washington: Institute of Electrical andElectronics Engineers, 1979 : 151-154.

共引文献6

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部