期刊文献+

高超声速飞行器再入段LQR自抗扰控制方法设计 被引量:12

LQR Active Disturbance Rejection Control Method Design for Hypersonic Vehicles in Reentry Phase
下载PDF
导出
摘要 针对高超声速飞行器(HSV)再入过程中强非线性、强耦合、气动参数变化剧烈的不确定性的特点,提出一种基于线性二次型调节器(LQR)和自抗扰控制(ADRC)的高超声速飞行器再入段的姿态控制方法。首先,建立高超声速飞行器再入段线性化模型,并采用LQR方法完成了状态反馈控制律设计。然后,结合自抗扰控制技术,设计了扩张状态观测器(ESO)对系统的模型不确定性和外部干扰进行补偿,大幅增强了系统的扰动抑制能力。最后,将得到的高超声速飞行器再入段LQR自抗扰姿态控制器(LQRADRC)应用于高超声速飞行器六自由度仿真,仿真结果表明本文所提出的控制方法能够快速、精确地跟踪角位置指令,并且对系统不确定性具有强鲁棒性。 Hypersonic vehicle(HSV)has strong nonlinearity,high coupling and multiple variables in the reentry process,bringing challenges for the attitude controller design.This paper investigates a compound control scheme combined with the advantages of the linear quadratic regulator(LQR)and active disturbance rejection control(ADRC)method for the reentry flight attitude control of HSV.Firstly,the HSV 6-degree-of-freedom model is established.Then the LQR control method is used for the reentry attitude control of the HSV.After that,the basic active disturbance rejection control(ADRC)method is built,and the extended state observer(ESO)is designed to make compensation for the uncertainty of the model.The LQRADRC method for the HSV is firstly proposed.Finally,the simulation results are shown to illustrate the advantages of the proposed LQRADRC method in terms of accuracy and robustness with uncertain parameters.
作者 高科 宋佳 艾绍洁 刘羿杰 GAO Ke;SONG Jia;AI Shao-jie;LIU Yi-jie(School of Astronautics,Beihang University,Beijing 100191,China;China Aerospace Science&Industry Corporation,Beijing 100048,China)
出处 《宇航学报》 EI CAS CSCD 北大核心 2020年第11期1418-1423,共6页 Journal of Astronautics
基金 国家自然科学基金(61473015,91646108) 国家H863项目(11100002017115004,111GFTQ2018115005,111GFTQ2019115006)。
关键词 高超声速飞行器(HSV) 姿态控制 自抗扰控制 线性二次型调节器(LQR) Hypersonic vehicle(HSV) Attitude control Active disturbance rejection control Linear quadratic regulator(LQR)
  • 相关文献

参考文献8

二级参考文献64

  • 1马辉,袁建平,方群.吸气式高超声速飞行器动力学特性分析[J].宇航学报,2007,28(5):1100-1104. 被引量:8
  • 2张邦楚,朱纪洪,潘书山,王少锋.Using Fractional-order PI^λD^μ Controller for Control of Aerodynamic Missile[J].Defence Technology(防务技术),2006,2(2):127-131. 被引量:4
  • 3Bertin, J.J., Cummings, R.M.: Fifty years of hypersonics: where we've been, where we're going. Prog. Aerospace Sci. 39 (6--7), 511-536 (2003). doi: 10.1016/S0376- 0421 (03)00079- 4.
  • 4Bertin, J.J., Cummings, R.M.: Critical hypersonic aerothermodynamic phenomena. Ann. Rev. Fluid Mech. 38, 129-157 (2006). doi: 10.1146/annurev.fluid.38.050304.092041.
  • 5Hirschel, E.H.: Viscous effects. Proc. Space Course, vol. 12, pp. 1-35. MBBFE202/S/PUB/441. Aachen, Germany (1991).
  • 6Bertin, J.J.: Hypersonic Aerothermodynamics. AIAA, Washington, DC (1994).
  • 7Walker, S.H., Rodgers, E: Falcon hypersonic technology overview. AIAA Paper 2005-3253 (2005).
  • 8Morelli, E.A., Derry, S.D.: Aerodynamic parameter estimation for the X-43A (Hyper-X) from flight data. AIAA Paper 2005-5921 (2005).
  • 9Eckert, R.G.: Engineering relations for friction and hear transfer to surfaces in high velocity flow. J. Aeronaut. Sci. 22(8), 585-587 (1955).
  • 100zgen, S., Ktrcali, S.A.: Linear stability analysis in compressible, flat-plate boundary-layers. Theor. Comput. Fluid Dyn. 22, 1-20 (2008). doi: 10.1007/s00162-007-0071-0.

共引文献81

同被引文献142

引证文献12

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部