期刊文献+

电动汽车无线充电自整定控制 被引量:8

Research on Self-Tuning Control Strategy of Wireless Charging for Electric Vehicles
下载PDF
导出
摘要 针对电动汽车需要分段式恒流充电以及无线充电的输出电流易受自身参数和环境变化影响的问题,应用电路理论分析了双LCC拓扑无线充电系统的动态特性,并通过扩展函数描述法(EDF)建立了描述该系统受扰动时的小信号模型,进而提出了一种基于双LCC补偿拓扑结构下电流-电流环的双闭环控制策略,实现了电动汽车无线充电的自整定控制。最后通过仿真验证了该系统能够有效减小动态响应时间和输出电流纹波系数,并且搭建谐振频率为85kHz电动汽车无线充电实验平台,验证了理论与仿真的正确性。 Aiming at the problem that electric vehicles need sectional constant current charging and the output current of wireless charging is susceptible to the influence of their own parameters and environmental changes,Application of circuit theory to analyze the dynamic characteristics of a dual LCC topology wireless charging system.A small signal model describing the disturbance of the system is established by EDF modeling method.A double closed-loop current-current loop system based on double LCC compensation topology is proposed to realize the self-tuning control of electric vehicle wireless charging.Finally,the simulation results show that the system can effectively reduce the dynamic response time and output current ripple coefficient.The experimental platform of wireless charging with resonant frequency of 85 kHz is built to verify the correctness of the theory and simulation.
作者 张献 任年振 杨庆新 王杰 Zhang Xian;Ren Nianzhen;Yang Qingxin;Wang Jie(Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy Tianjin Polytechnic University,Tianjin 300387 China)
出处 《电工技术学报》 EI CSCD 北大核心 2020年第23期4825-4834,共10页 Transactions of China Electrotechnical Society
基金 国家自然科学基金(51677132,51977147) 国家重点研发计划(2018YFB0106303)资助。
关键词 双LCC补偿拓扑 小信号模型 双闭环 自整定控制 Double LCC compensation topology small signal model double closed loop self-tuning control
  • 相关文献

参考文献10

二级参考文献73

  • 1Wang, Bingnan,Teo, Koon Hoo,Nishino, Tamotsu,Yerazunis, William,Barnwell, John,Zhang, Jinyun.Experiments on wireless power transfer with metamaterials. Applied Physics . 2011
  • 2Dionigi M,Mongiardo M.Multi band resonators for wireless power transfer and near field magnetic communications. Microwave Workshop Series on Innovative Wireless Power Transmission;Technologies,Systems,and Applications (IMWS) . 2012
  • 3Nottiani D G,Leccese F.A simple method for calculating lumped parameters of planar spiral coil for wireless energy transfer. 11 th International Conference on Environment and Electrical Engineering (EEEIC) . 2012
  • 4Ricketts David S,Chabalko Matthew,Hilleni us Andrew.Tri-loop impedance and frequency matching with high-Q resonators in wireless power transfer. IEEE Antennas and Wireless Propagation Letters . 2014
  • 5Sun Tianjia,Xie Xiang,Wang Zhihua.Wireless Power Transfer for Medical Microsystems. . 2013
  • 6Christ A,Douglas M G.Evaluation of Wireless Resonant Power Transfer System with Human Electromagnetic Exposure Limits. IEEE Transactions on Electronic Devices . 2013
  • 7JONAH O,GEORGAKOPOULOS S V.Wireless power transfer in concrete via strongly coupled magnetic resonance. IEEE Transactions on Antennas and Propagation . 2013
  • 8MAYORDOMO I,DRAGER T,SPIES P,et al.An overview of technical challenges and advances of inductive wireless power transmission. Proceedings of Tricomm . 2013
  • 9BERND S II,CHANG Kai.Microwave Power Transmission:Historical Milestones and System Components. Proceedings of Tricomm . 2013
  • 10Ayodele Sanni,Antonio Vilches,C. Toumazou.Inductive and Ultrasonic Multi-Tier Interface for Low-Power, Deeply Implantable Medical Devices. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS . 2012

共引文献284

同被引文献72

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部