期刊文献+

基于光流及轨迹的人群异常行为检测 被引量:7

Crowd abnormal behavior detection based on optical flow and track
原文传递
导出
摘要 针对复杂背景及遮挡等原因引起人群异常行为检测性能低的问题,本文提出了一种基于综合光流特征描述符(SOFD)及轨迹的人群异常行为检测方法。首先,根据人群光流场变化计算人群运动速度、加速度、方向和能量,并利用上述特征设计新的时空特征描述符,即SOFD。其次,利用KLT追踪算法获得人群运动轨迹单帧图。最后,基于所获取的上述特征,设计双流卷积神经网络(TS-CNN)以检测人群异常行为。仿真结果表明:与现有主流算法相比,复杂环境下本文方法具有较高的异常行为检测准确率、较好的泛化性及稳健性。 Focusing on the problem of low detection performance of crowd abnormal behavior conducted by complex background and occlusion as well as other factors,a crowd abnormal behavior detection method is proposed based on synthetic optical flow feature descriptor(SOFD)and trajectory.First,the velocity,acceleration,direction and energy of crowd motion are calculated according to the change of crowd optical flow field.Then,a new space-time feature descriptor,i.e.,SOFD,is constructed based on the above characteristics.Third,the Kanade-Lucas-Tomasi(KLT)tracking algorithm is employed to obtain the single frame of crowd motion trajectory.Finally,the two stream convolution neural network(TS-CNN)is depicted with the abovementioned characteristics to detect the crowd abnormal behavior.Compared with the existing state-of-the-arts algorithms,simulation results show that the proposed method has higher accuracy,better robustness and wide application range in abnormal behavior detection under complex environments.
作者 王洪雁 周梦星 WANG Hong-yan;ZHOU Meng-xing(College of Information Engineering,Dalian University,Dalian 116622,China;School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China;Faculty of Intelligent Manufacturing,Wuyi University,Jiangmen 529020,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第6期2229-2237,共9页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61301258,61271379) 中国博士后科学基金项目(2016M590218) 河南省高等学校重点科研项目支持计划项目(14A520079) 河南省科技攻关计划项目(162102210168).
关键词 计算机应用 人群异常行为检测 综合光流特征描述符 轨迹 双流卷积神经网络 computer application crowd abnormal behavior synthetic optical flow feature descriptor(SOFD) track two stream convolutional neural networks(TS-CNN)
  • 相关文献

参考文献2

二级参考文献12

  • 1Datta A, Shah M, da Vitoria Lobo N. Person-on- person violence detection in video data[C]//16th In- ternational Conference on Pattern Recognition, Quebec, Canada,20O2 ..433-438.
  • 2Felzenszwalb P F, Huttenlocher D P. Pictorial structure for object recognition [ J ]. International Journal of Computer Vision, 2005, 61 (1) : 55-79.
  • 3Xiang Tao, Gong Shao-gang. Incremental and adap- tive abnormal behavior detection[J]. Computer Vi- sion and Image Understanding, 2008, 111(1): 59- 73.
  • 4Fathi A, Mori G. Action recognition by learning mid-level motion features[,DB/OL]. [2012-01-17]. http://www, cs. sfu. ca/: mori/research/papers/ fathi_actionrecognition_cvpr08, pdf.
  • 5Andriluka M, Roth S, Schiele B. Pictorial struc- tures revisited. People detection and atriculated pose estimation[,C]//IEEE Conference on Computer Vi- sion and Pattern Recognitiort, Miami, USA, 2009: 1014-1021.
  • 6Ma G Y, Lin X Y. Typical sequences extraction and recognition[J]. Lecture Notes in Computer Science, 2004, 3058:60-71.
  • 7Masoud O, Papanikolopoulos N. A method for hu- man action recognition[J]. Image and Vision Com- puting, 2003, 21(8)..729-743.
  • 8Au C E, Skaff S, Clark J J. Anomaly detection for video surveillance application[C]//18th Internation- al Conference on Pattern Recognition, Hong Kong, China, 2006 :888-891.
  • 9Koller D, Weber J, Huang T, et al. Toward robust automatic traffic scene analysis in real-time video[C] //Proceedings of the 12th IAPR International Con- ference on Computer Vision : Image Processing, Australia, 1994 .. 126-131.
  • 10Du Jian-hao, Xu Li. Abnormal behavior detection based on regional optical flow[J]. Journal of Zhe- jiang University (Engineering Science), 2011, 45 (7) : 1161-1166.

共引文献5

同被引文献59

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部