期刊文献+

一种复合型极化转换表面及其在天线辐射散射调控中的应用 被引量:3

Composite polarization conversion metasurface and its application in integrated regulation radiation and scattering of antenna
下载PDF
导出
摘要 透射型极化转换表面因其具有易于与天线共形的巨大应用优势,受到国内外学者的广泛关注.本文将极化栅结构与各向异性贴片结构相结合,设计并验证了一种复合型透射极化转换单元,将该极化转换单元组成透射超表面,可以同时实现极化选择和透射型线-圆极化变换两种功能.当电磁波极化方向垂直于极化栅延伸方向入射到复合型极化转换表面时,该极化转换表面可以在9.3-10.9 GHz实现透射型线-右旋圆极化转换,当电磁波极化方向平行于极化栅延伸方向入射时,可以实现同极化全反射.将该极化转换单元及其镜像单元棋盘排布后组成棋盘排布表面,以电磁表面覆层的形式应用于带宽为9.4-10.7 GHz的线极化源微带天线,利用圆极化的相反旋向对消特性,组成一款新颖的线极化天线.相比于源微带天线,在9.5-10.5 GHz该天线的线极化纯度得到提高,同时实现了天线的前向增益提高和带内雷达散射截面减缩,最大减缩量达39.2 dB.实验验证和仿真结果吻合较好,该设计在高增益、低散射天线设计和天线辐散射性能综合调控中具有重要的参考价值. The transmission polarization conversion metasurface has been widely concerned,because it has the advantage of being easy to be conformal with the antenna.Based on the reasonable arrangement of transmission polarization conversion units,various and complex electromagnetic functions can be realized.As the electromagnetic open window on the flight platform,the antenna is the bottleneck that restricts the decrease of radar cross section(RCS)of the whole flight platform.It is difficult to simultaneously realize the normal and efficient radiation of the antenna and the decrease of the RCS of the antenna.When the designed transmission metasurface is used in the antenna design,the radiation and scattering of the antenna can be regulated comprehensively.In this paper,a composite polarization conversion metasurface is proposed and verified.The unit cell of composite polarization conversion metasurface consists of two mirror symmetrical anisotropic metal patches in the upper layer,a dielectric layer and a polarization gate in the lower layer.When the polarization direction of the incident electromagnetic wave is perpendicular to the extension direction of the polarization gate and arrives at the composite polarization conversion surface,the conversion surface can realize the conversion from transmission linear polarization to right-hand circular polarization in a frequency range from 9.3 GHz to 10.9 GHz.When the polarization direction of the incident electromagnetic wave is parallel to the extension direction of the polarization gate,co-polarized total reflection can be realized.The chessboard arrangement metasurface is composed of composite polarization conversion unit and its mirror unit.A novel linearly polarized chessboard arrangement metasurface antenna is composed of the linearly polarized source microstrip antenna with a bandwidth of 9.4-10.7 GHz and the chessboard arrangement metasurface.By using the counter rotating cancellation characteristic of circular polarization,the chessboard arrangement metasurface antenna maintains linearly polarized radiation.Comparing with the source microstrip antenna,the linear polarization purity of chessboard arrangement metasurface antenna is improved from 9.5 GHz to 10.5 GHz.At the same time,the forward gain of the chessboard arrangement antenna increases and the radar cross section decreases.The maximum reduction is 39.2 dB.To further verify the practicability of the design and analysis,the chessboard arrangement metasurface antenna sample is fabricated and measured in microwave anechoic chamber with an Agilent 5230C network analyzer.The experimental results are in good agreement with the simulation results.This study has important reference value in the design of high gain,low RCS antenna and integrated regulation radiation and scattering of antenna.
作者 郭泽旭 曹祥玉 高军 李思佳 杨欢欢 郝彪 Guo Ze-Xu;Cao Xiang-Yu;Gao Jun;Li Si-Jia;Yang Huan-Huan;Hao Biao(Information and Navigation College,Air Force Engineering University,Xi’an 710077,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2020年第23期73-83,共11页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61471389,61671464,61701523,61801508) 陕西省自然科学基金(批准号:2018JM6040,2019JQ-103,2020JM-350)资助的课题.
关键词 透射型极化转换 超表面 天线 transmission polarization convention metasurface antenna
  • 相关文献

参考文献2

二级参考文献34

  • 1Li S J, Gao J, Cao X Y, Zhang Z, Zhang D .2014. IEEE Antennas Wireless Propaga. Lett. 13 1413.
  • 2Li S J, Cao X Y, Gao J, Zheng Q R, Yang H H .2014. Microw. Opt. Technol. Lett. 56 27.
  • 3Liu Y, Zhang X .2011. Chem. Soc. Rev. 40 2494.
  • 4Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q .2014. Chin. Phys. B 23 017802.
  • 5Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z .2013. Chin. Phys. B 22 067801.
  • 6Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R .2006. Science 314 977.
  • 7Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402.
  • 8Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C .2015. Opt. Express 23 3523.
  • 9Singh R, Plum E, Zhang W, Zheludev N I .2010. Opt. Express 18 13425.
  • 10Slovick B, Yu Z G, Berding M, Krishnamurthy S .2013. Phys. Rev. B 88 165116.

共引文献19

同被引文献14

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部