期刊文献+

基于改进花朵授粉算法的Web服务组合优化 被引量:4

Optimization of Web Service Composition Based on Improved Flower Pollination Algorithm
下载PDF
导出
摘要 对于大量功能相似而服务质量不同的Web服务,服务组合优化可使其满足客户不同需求并被广泛应用,但现有Web服务组合优化方法普遍存在搜索效率低和寻优不精准的问题。为此,提出一种改进的花朵授粉算法,通过实现全局搜索和局部搜索的动态转换,促进种群优化。将差分进化算法的变异和交换操作加入到花朵授粉算法中,增强花朵的有效性和多样性,同时利用贪心策略选择适应度值高的花朵,加快算法收敛速度,增强其寻优能力。实验结果表明,与DE、KDE、FPA和EFPA算法相比,该算法在求解服务组合问题上具有更快的收敛速度和更好的寻优性能。 For a large number of Web services with similar functions and different qualities,Web service composition optimization can enable them to meet different needs of customers and be widely used.To address the low search efficiency and inaccurate optimization of existing service composition optimization methods,this paper proposes an Improved Flower Pollination Algorithm(IFPA),which realizes the dynamic transformation between global search and local search to promote population optimization.The mutation and exchange of the differential evolutionary algorithm are added to FPA to enhance the efficiency and diversity of flowers.Also,the greedy strategy is used to select flowers with high fitness value to accelerate the convergence and enhance the optimization ability of the algorithm.The experimental results show that,compared with DE algorithm,KDE algorithm,FPA algorithm and EFPA algorithm,the proposed algorithm has faster convergence speed and better optimization performance in solving service composition problem.
作者 谭文安 吴嘉凯 TAN Wenan;WU Jiakai(School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;School of Computer and Information Engineering,Shanghai Polytechnic University,Shanghai 201209,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第12期67-72,共6页 Computer Engineering
基金 国家自然科学基金(61672022,61272036) 上海第二工业大学校重点学科资助项目(XXKZD1604)。
关键词 花朵授粉算法 差分进化 WEB服务组合 服务质量 全局优化 Flower Pollination Algorithm(FPA) Differential Evolution(DE) Web service composition Quality of Service(QoS) global optimization
  • 相关文献

参考文献5

二级参考文献30

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2杨胜文,史美林.一种支持QoS约束的Web服务发现模型[J].计算机学报,2005,28(4):589-594. 被引量:131
  • 3张楠,李志蜀,张建华,李奇.基于混沌理论的免疫遗传算法[J].计算机应用,2006,26(5):1111-1112. 被引量:7
  • 4王勇,胡春明,杜宗霞.服务质量感知的网格工作流调度[J].软件学报,2006,17(11):2341-2351. 被引量:60
  • 5Zeng Liangzhao, Benatallah Boualem, et al. QoS-aware mid- dleware for Web services composition. IEEE Transactions on Software Engineering, 2004, 30(5): 311-326.
  • 6Eberhart R, Kennedy J. A new optimizer using particle swarm theory//Proceedings of the 7th International Symposium on Micro Machine and Human Science. Piscataway: IEEE Service Center, 1995:39-43.
  • 7Shi Y, Eberhart R. A modified particle swarm optimizer// Proceedings of the IEEE International Conference on Evolu- tionary Computation. Anchorage, AK, 1998:69-73.
  • 8Shi Y, Eberhart R C. Parameter selection in particle swarm optimization//Proceedings of the 7th International Confer- ence on Evolutionary Programming. Berlin: Springer, 1998: 591-600.
  • 9Poli Riccardo, Kennedy James, Blackwell Tim. Particle swarm optimization: An overview. Swarm Intelligence, 2007, 1(1): 33-57.
  • 10倪晚成,刘连臣,吴澄.Web服务组合方法综述[J].计算机工程,2008,34(4):79-81. 被引量:63

共引文献101

同被引文献32

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部