期刊文献+

融合VGG与FCN的智能出租车订单预测模型 被引量:3

Intelligent Taxi Order Forecasting Model Fusing VGG with FCN
下载PDF
导出
摘要 为提高出租车市场管理和运营效率以及实现出租车效益最大化,在地图栅格化的基础上,提出一种融合VGG网络与全卷积网络(FCN)的出租车多区域订单预测模型。将出租车轨迹数据转换为订单图像,去除VGG网络全连接层仅保留主要结构以减少模型参数,利用该网络中深度卷积提取不同空间区域出租车行驶特征,使用FCN中反卷积层上采样重构下一个时间段出租车订单图像,从而获得不同区域和时间段的出租车订单预测数据,并以订单图像形式呈现在地图上。实验结果表明,与BP、RBF等预测模型相比,该模型预测结果平均准确率更高且均方根误差更低,可快速预测出租车多区域订单分布情况。 In order to improve the efficiency of taxi market management and operation,and maximize the taxi benefit,this paper proposes a multi-region taxi order forecasting model based on VGG network and Fully Convolutional Networks(FCN)using map rasterization.The taxi trajectory data is converted into order images,and the full connection layer of VGG network is removed while only the main structure is retained to reduce the number of model parameters.The deep convolution in the network is used to extract taxi driving characteristics in different spatial regions,and the taxi order images of the next time period is reconstructed by sampling on the deconvolution layer.So the forecasting data of the taxi orders of different regions and periods is obtained and presented as order images on the map.Experimental results show that compared with BP,RBF and other forecasting models,the prediction results of the proposed model has a higher average accuracy and a lower Root Mean Square Error(RMSE).It can quickly predict the distribution of taxi orders in different regions.
作者 李浩 霍雯 裴春营 袁瑶瑶 康雁 LI Hao;HUO Wen;PEI Chunying;YUAN Yaoyao;KANG Yan(School of Software,Yunnan University,Kunming 650091,China;Key Laboratory of Software Engineering of Yunnan Province,Kunming 650091,China;College of Geomatics,Xi’an University of Science and Technology,Xi’an 710054,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第12期276-282,共7页 Computer Engineering
基金 国家自然科学基金(61762092)。
关键词 出租车订单预测 VGG网络 全卷积网络 反卷积层 融合模型 taxi order forecasting VGG network Fully Convolutional Networks(FCN) deconvolution layer fusion model
  • 相关文献

参考文献5

二级参考文献32

  • 1关金平,朱竑.基于FCD的出租车空驶时空特性及成因研究——以深圳国贸CBD为例[J].中山大学学报(自然科学版),2010,49(S1):29-36. 被引量:10
  • 2王昊,王炜,陈峻,徐任婷.城市出租车交通分布预测模型[J].公路交通科技,2006,23(6):145-148. 被引量:22
  • 3李瑞敏,陆化普.基于WebGIS的智能交通管理指挥调度系统[J].计算机工程,2007,33(21):232-234. 被引量:27
  • 4Yang Hai,Wong S C.A Network Model of Urban Taxi Services[J].Transportation Research:Part B,1998,32(4):235-246.
  • 5Wong K I,Wong S C,Yang Hai.Modeling Urban Taxi Services in Congested Road Network with Elastic Demand[J].Transportation Research:Part B,200l,35(9):819-842.
  • 6Yang Hai,Wong S C,Wong K I.Demand-supply Equilibrium of Taxi Services in a Network Under Competition and Regulation[J].Transportation Research:Part B,2002,36(9):799-819.
  • 7Yang Hai,Ye Min,Wilson H T.Regulating Taxi Services in the Presence of Congestion Externality[J].Transportation Research:Part A,2005,39(1):17-40.
  • 8Morisugi H,Arintono S,Parajuli B P.Fare Level and Fleet Optimization of Taxi and Bus Operation in Yogyakara,Indonesia[J].Journal of the Eastern Asia Society for Transportation Studies,1997,2(5):1547-1553.
  • 9Jason C S K,Chu Chun-hsiao.Taxi Vacancy Rate,Fare,and Maximum Social Willingness-to-pay Under Log-linear Demand Function[J].Journal of the Transporta-tion Research Board,2009,11(1):90-99.
  • 10辛飞飞,陈小鸿,林航飞.浮动车数据路网时空分布特征研究[J].中国公路学报,2008,21(4):105-110. 被引量:36

共引文献56

同被引文献8

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部